Haptik is one of the world's largest Conversational AI platforms reaching over 30 million devices monthly. The company has been at the forefront of the paradigm shift from apps to chatbots, having built a robust set of technology and tools that enable any type of conversational application. Our platform processed over a billion interactions to date and helps enterprises leverage the power of AI to automate critical business processes like Concierge, Customer Support, Lead Generation and E-commerce.

Tay was built to learn the way millennials converse on Twitter, with the aim of being able to hold a conversation on the platform. In Microsoft’s words: “Tay has been built by mining relevant public data and by using AI and editorial developed by a staff including improvisational comedians. Public data that’s been anonymised is Tay’s primary data source. That data has been modelled, cleaned and filtered by the team developing Tay.”
Multinational Naive Bayes is the classic algorithm for text classification and NLP. For an instance, let’s assume a set of sentences are given which are belonging to a particular class. With new input sentence, each word is counted for its occurrence and is accounted for its commonality and each class is assigned a score. The highest scored class is the most likely to be associated with the input sentence.
IBM estimates that 265 billion customer support tickets and calls are made globally every year, resulting in $1.3 trillion in customer service costs. IBM also referenced a Chatbots Magazine figure purporting that implementing customer service AI solutions, such as chatbots, into service workflows can reduce a business’ spend on customer service by 30 percent.
As retrieved from Forbes, Salesforce’s chief scientist, Richard Socher talked in a conference about his revelations of NLP and machine translation: “I can’t speak for all chatbot deployments in the world – there are some that aren’t done very well…but in our case we’ve heard very positive feedback because when a bot correctly answers questions or fills your requirements it does it very, very fast.
To inspire your first (or next) foray into the weird and wonderful world of chatbots, we've compiled a list of seven brands whose bot-based campaigns were fueled by an astute knowledge of their target audiences and solid copywriting. Check them out below, and start considering if a chatbot is the right move for your own company's next big marketing campaign.

The promise of artificial intelligence (AI) has permeated across the enterprise giving hopes of amping up automation, enriching insights, streamlining processes, augmenting workers, and in many ways making our lives as consumers, employees, and customers a whole lot better. Senior management salivates over the exponential gains AI is supposed to deliver to their business. Kumbayah […]
Enter Roof Ai, a chatbot that helps real-estate marketers to automate interacting with potential leads and lead assignment via social media. The bot identifies potential leads via Facebook, then responds almost instantaneously in a friendly, helpful, and conversational tone that closely resembles that of a real person. Based on user input, Roof Ai prompts potential leads to provide a little more information, before automatically assigning the lead to a sales agent.
The evolution of artificial intelligence is now in full swing and chatbots are only a faint splash on a huge wave of progress. Today the number of users of messaging apps like WhatsApp, Slack, Skype and their analogs is skyrocketing, Facebook Messenger alone has more than 1.2 billion monthly users. With the spread of messengers, virtual chatterbots that imitate human conversations for solving various tasks are becoming increasingly in demand. Chinese WeChat bots can already set medical appointments, call a taxi, send money to friends, check in for a flight and many many other.
…utilizing chat, messaging, or other natural language interfaces (i.e. voice) to interact with people, brands, or services and bots that heretofore have had no real place in the bidirectional, asynchronous messaging context. The net result is that you and I will be talking to brands and companies over Facebook Messenger, WhatsApp, Telegram, Slack, and elsewhere before year’s end, and will find it normal.
Chatbots and virtual assistants (VAs) may be built on artificial intelligence and create customer experiences through digital personas, but the success you realize from them will depend in large part on your ability to account for the real and human aspects of their deployment, intra-organizational impact, and customer orientation. Start by treating your bots and […]

Pop-culture references to Skynet and a forthcoming “war against the machines” are perhaps a little too common in articles about AI (including this one and Larry’s post about Google’s RankBrain tech), but they do raise somewhat uncomfortable questions about the unexpected side of developing increasingly sophisticated AI constructs – including seemingly harmless chatbots.


In 1950, Alan Turing's famous article "Computing Machinery and Intelligence" was published,[7] which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably—on the basis of the conversational content alone—between the program and a real human. The notoriety of Turing's proposed test stimulated great interest in Joseph Weizenbaum's program ELIZA, published in 1966, which seemed to be able to fool users into believing that they were conversing with a real human. However Weizenbaum himself did not claim that ELIZA was genuinely intelligent, and the introduction to his paper presented it more as a debunking exercise:
×