Beyond users, bots must also please the messaging apps themselves. Take Facebook Messenger. Executives have confirmed that advertisements within Discover — their hub for finding new bots to engage with — will be the main way Messenger monetizes its 1.3 billion monthly active users. If standing out among the 100,000 other bots on the platform wasn't difficult enough, we can assume Messenger will only feature bots that don't detract people from the platform.


Derived from “chat robot”, "chatbots" allow for highly engaging, conversational experiences, through voice and text, that can be customized and used on mobile devices, web browsers, and on popular chat platforms such as Facebook Messenger, or Slack. With the advent of deep learning technologies such as text-to-speech, automatic speech recognition, and natural language processing, chatbots that simulate human conversation and dialogue can now be found in call center and customer service workflows, DevOps management, and as personal assistants.
The term "ChatterBot" was originally coined by Michael Mauldin (creator of the first Verbot, Julia) in 1994 to describe these conversational programs. Today, most chatbots are either accessed via virtual assistants such as Google Assistant and Amazon Alexa, via messaging apps such as Facebook Messenger or WeChat, or via individual organizations' apps and websites.[2] [3] Chatbots can be classified into usage categories such as conversational commerce (e-commerce via chat), analytics, communication, customer support, design, developer tools, education, entertainment, finance, food, games, health, HR, marketing, news, personal, productivity, shopping, social, sports, travel and utilities.[4]
Because chatbots are predominantly found on social media messaging platforms, they're able to reach a virtually limitless audience. They can reach a new customer base for your brand by tapping into new demographics, and they can be integrated across multiple messaging applications, thus making you more readily available to help your customers. This, in turn, opens new opportunities for you to increase sales.
The front-end app you develop will interact with an AI application. That AI application—usually a hosted service—is the component that interprets user data, directs the flow of the conversation and gathers the information needed for responses. You can then implement the business logic and any other components needed to enable conversations and deliver results.

A toolkit can be integral to getting started in building chatbots, so insert, BotKit. It gives a helping hand to developers making bots for Facebook Messenger, Slack, Twilio, and more. This BotKit can be used to create clever, conversational applications which map out the way that real humans speak. This essential detail differentiates from some of its other chatbot toolkit counterparts.
Prashant Sridharan, Twitter’s global director of developer relations says: “I’ve seen a lot of hyperbole around bots as the new apps, but I don’t know if I believe that. I don’t think we’re going to see this mass exodus of people stopping building apps and going to build bots. I think they’re going to build bots in addition to the app that they have or the service they provide,” as reported by re/code.
Its a chat-bot — For simplicity reasons in this article, it is assumed that the user will type in text and the bot would respond back with an appropriate message in the form of text (So, we will not be concerned with the aspects like ASR, speech recognition, speech to text, text to speech etc., Below architecture can anyways be enhanced with these components, as required).
For as long as I can remember, email has been a fundamentally important channel for a large majority of businesses. The ability to market products directly through a channel that scales up to an incredibly high ceiling is very attractive. The only problem is that it's costing more and more money to acquire email addresses from potential customers, and the engagement from email is getting worse and worse.
Users want to ask questions in their own language, and have bots help them. A statement that sounds as straight-forward as “My login isn’t working! I haven’t been able to log into your on-line billing system” might sound straight forward to us, but to a bot, there’s a lot it needs to understand. Watson Conversation Services has learned from Wikipedia, and along with its deep learning techniques, it’s able to work out what the user is asking.
Generally, companies engage in passive customer interactions. That is, they only respond to inquiries but don’t start chats. AI bots can begin the conversation and inform customers about sales and promotions. Moreover, virtual assistants can offer product pages, images, blog entries, and video tutorials. Suppose a customer finds a nice pair of jeans on your website. In this case, a chatbot can send them a link to a page with T-shirts that go well with them.
Prashant Sridharan, Twitter’s global director of developer relations says: “I’ve seen a lot of hyperbole around bots as the new apps, but I don’t know if I believe that. I don’t think we’re going to see this mass exodus of people stopping building apps and going to build bots. I think they’re going to build bots in addition to the app that they have or the service they provide,” as reported by re/code.
By 2022, task-oriented dialog agents/chatbots will take your coffee order, help with tech support problems, and recommend restaurants on your travel. They will be effective, if boring. What do I see beyond 2022? I have no idea. Amara’s law says that we tend to overestimate technology in the short term while underestimating it in the long run. I hope I am right about the short term but wrong about AI in 2022 and beyond! Who would object against a Starbucks barista-bot that can chat about weather and crack a good joke?

Eventually, a single chatbot could become your own personal assistant to take care of everything, whether it's calling you an Uber or setting up a meeting. Or, Facebook Messenger or another platform might let a bunch of individual chatbots to talk to you about whatever is relevant — a chatbot from Southwest Airlines could tell you your flight's delayed, another chatbot from FedEx could tell you your package is on the way, and so on.
1. Define the goals. What should your chatbot do? Clearly indicate the list of functions your chatbot needs to perform. 2. Choose a channel to interact with your customers. Be where your clients prefer to communicate — your website, mobile app, Facebook Messenger, WhatsApp or other messaging platform. 3. Choose the way of creation. There are two of them: using readymade chat bot software or building a custom bot from scratch. 4. Create, customize and launch. Describe the algorithm of its actions, develop a database of answers and test the work of the chatbot. Double check everything before showing your creation to potential customers.
Tay, an AI chatbot that learns from previous interaction, caused major controversy due to it being targeted by internet trolls on Twitter. The bot was exploited, and after 16 hours began to send extremely offensive Tweets to users. This suggests that although the bot learnt effectively from experience, adequate protection was not put in place to prevent misuse.[56]
While messaging and voice interfaces are central components, they fit into a larger picture of increasing infusion of technology into our daily lives, which in turn is unlocking new potential for brand-to-consumer interaction. The fact is, technology overall is becoming more deeply woven into our lives, and the entire ecosystem is enjoying tighter cohesion through the increasing availability and sophistication of APIs. Smart companies are finding new and innovative touch points with consumers that are contextual, relevant, highly personal, and yes, conversational. Commerce is becoming not only more conversational but more ubiquitous and seamlessly integrated into our lives, and the way we interact with brands will be forever changed as a result.
One of the first stepping stones to this future are AI-powered messaging solutions, or conversational bots. A conversational bot is a computer program that works automatically and is skilled in communicating through various digital media—including intelligent virtual agents, organizations' apps, organizations' websites, social platforms and messenger platforms. Users can interact with such bots, using voice or text, to access information, complete tasks or execute transactions. 
I will not go into the details of extracting each feature value here. It can be referred from the documentation of rasa-core link that I provided above. So, assuming we extracted all the required feature values from the sample conversations in the required format, we can then train an AI model like LSTM followed by softmax to predict the next_action. Referring to the above figure, this is what the ‘dialogue management’ component does. Why LSTM is more appropriate? — As mentioned above, we want our model to be context aware and look back into the conversational history to predict the next_action. This is akin to a time-series model (pls see my other LSTM-Time series article) and hence can be best captured in the memory state of the LSTM model. The amount of conversational history we want to look back can be a configurable hyper-parameter to the model.
One of the first stepping stones to this future are AI-powered messaging solutions, or conversational bots. A conversational bot is a computer program that works automatically and is skilled in communicating through various digital media—including intelligent virtual agents, organizations' apps, organizations' websites, social platforms and messenger platforms. Users can interact with such bots, using voice or text, to access information, complete tasks or execute transactions. 
A virtual assistant is an app that comprehends natural, ordinary language voice commands and carries out tasks for the users. Well-known virtual assistants include Amazon Alexa, Apple’s Siri, Google Now and Microsoft’s Cortana. Also, virtual assistants are generally cloud-based programs so they need internet-connected devices and/or applications in order to work. Virtual assistants can perform tasks like adding calendar appointments, controlling and checking the status of a smart home, sending text messages, and getting directions.
The classic historic early chatbots are ELIZA (1966) and PARRY (1972).[10][11][12][13] More recent notable programs include A.L.I.C.E., Jabberwacky and D.U.D.E (Agence Nationale de la Recherche and CNRS 2006). While ELIZA and PARRY were used exclusively to simulate typed conversation, many chatbots now include functional features such as games and web searching abilities. In 1984, a book called The Policeman's Beard is Half Constructed was published, allegedly written by the chatbot Racter (though the program as released would not have been capable of doing so).[14]
×