Businesses are no exception to this rule. As more and more users now expect and prefer chat as a primary mode of communication, we’ll begin to see more and more businesses leveraging conversational AI to achieve business goals—just as Gartner predicts. It’s not just for the customer; your business can reduce operational costs and scale operations as well.
Ursprünglich rein textbasiert, haben sich Chatbots durch immer stärker werdende Spracherkennung und Sprachsynthese weiterentwickelt und bieten neben reinen Textdialogen auch vollständig gesprochene Dialoge oder einen Mix aus beidem an. Zusätzlich können auch weitere Medien genutzt werden, beispielsweise Bilder und Videos. Gerade mit der starken Nutzung von mobilen Endgeräten (Smartphones, Wearables) wird diese Möglichkeit der Nutzung von Chatbots weiter zunehmen (Stand: Nov. 2016).[10] Mit fortschreitender Verbesserung sind Chatbots dabei nicht nur auf wenige eingegrenzte Themenbereiche (Wettervorhersage, Nachrichten usw.) begrenzt, sondern ermöglichen erweiterte Dialoge und Dienstleistungen für den Nutzer. Diese entwickeln sich so zu Intelligenten Persönlichen Assistenten.
Oh and by the way: We’ve been hard at work on some interesting projects at Coveo, one of those focusing squarely on the world of chatbots. We’ve leveraged our insight engine, and enabled it to work within the confines of your preferred chat tool: the power of Coveo, in chatbot form. The best part about our work in the field of chatbots? The code is out there in the wild waiting for you to utilize it, providing that you are already a customer or partner of Coveo. All you need to do is jump over to the Coveo Labs github page, download it, and get your hands dirty!

Through our preview journey in the past two years, we have learned a lot from interacting with thousands of customers undergoing digital transformation. We highlighted some of our customer stories (such as UPS, Equadex, and more) in our general availability announcement. This post covers conversational AI in a nutshell using Azure Bot Service and LUIS, what we’ve learned so far, and dive into the new capabilities. We will also show how easy it is to get started in building a conversational bot with natural language.


Spot is a chatbot developed by Criminal Psychologist Julia Shaw at the University College London. Using memory science and AI, Spot doesn’t just allow users to report workplace harassment and bullying, but is capable of asking personalized, open-ended questions to help you recall details about events that made you feel uncomfortable. The application helps users process what happened, to understand whether or not they experienced harassment or discrimination and offers advice on how they can take matters further.

H&M’s consistent increased sales over the past year and its August announcement to launch an eCommerce presence in Canada and South Korea during the fall of 2016, along with 11 new H&M online markets (for a total of 35 markets by the end of the year), appear to signify positive results for its chatbot implementation (though direct correlations are unavailable on its website).

A basic SMS service is available via GitHub to start building a bot which uses IBM’s BlueMix platform which hosts the Watson Conversation Services. A developer can import a workspace to setup a new service. This starts with a blank dashboard where a developer can import all the tools needed to run the conversation service. The services has a dialog flow – a series of options with yes/no answers that the service uses to work out what the user’s intent is, what entity it’s working on, how to respond and how to phrase the response in the best way for the user.
Another reason is that Facebook, which has 900 million Messenger users, is expected to get into bots. Many see this as a big potential opportunity; where Facebook goes, the rest of the industry often follows. Slack, which lends itself to bot-based services, has also grown dramatically to two million daily users, which bot makers and investors see as a potentially lucrative market.
Search for the bot you want to add. At the time of this writing, there are about a dozen bots available, with more being added every day. Chat bots are available for customer service, news, ordering, and more, depending on the company that releases it. For example, you could get news from the CNN bot and order flowers from the 1-800-flowers bot. The process for finding a bot varies depending on your device:[1]
AllAgriculture (24) AI & ML (142) AR, VR, & MR (65) Asset Tracking (53) Blockchain (21) Building Automation (38) Connectivity (148) Bluetooth (12) Cellular (38) LPWAN (38) Data & Analytics (131) Devices & Sensors (174) Digital Transformation (189) Edge & Cloud Computing (54) Energy & Utilities (42) Finance & Insurance (10) Industrial IoT (101) IoT Platforms (81) Medical & Healthcare (47) Retail (28) Security (139) Smart City (88) Smart Home (91) Transport & Supply Chain (59) UI & UX (39) Voice Interaction (33)
Not integrated. This goes hand-in-hand with the contextual knowledge, but chatbots often suffer from “death by data silo” where their access to data is limited. If a chatbot is “chatting with” a customer, they not only need to access the contextual data of their customer but also have access to every place where the answer to the customer’s question may reside. Product documentation site, customer community, different websites are all places where that answer can be.
Die meisten Chatbots greifen auf eine vorgefertigte Datenbank, die sog. Wissensdatenbank mit Antworten und Erkennungsmustern, zurück. Das Programm zerlegt die eingegebene Frage zuerst in Einzelteile und verarbeitet diese nach vorgegebenen Regeln. Dabei können Schreibweisen harmonisiert (Groß- und Kleinschreibung, Umlaute etc.), Satzzeichen interpretiert und Tippfehler ausgeglichen werden (Preprocessing). Im zweiten Schritt erfolgt dann die eigentliche Erkennung der Frage. Diese wird üblicherweise über Erkennungsmuster gelöst, manche Chatbots erlauben darüber hinaus die Verschachtelung verschiedener Mustererkennungen über sogenannte Makros. Wird eine zur Frage passende Antwort erkannt, kann diese noch angepasst werden (beispielsweise können skriptgesteuert berechnete Daten eingefügt werden – „In Ulm sind es heute 37 °C.“). Diesen Vorgang nennt man Postprocessing. Die daraus entstandene Antwort wird dann ausgegeben. Moderne kommerzielle Chatbot-Programme erlauben darüber hinaus den direkten Zugriff auf die gesamte Verarbeitung über eingebaute Skriptsprachen und Programmierschnittstellen.
This machine learning algorithm, known as neural networks, consists of different layers for analyzing and learning data. Inspired by the human brain, each layer is consists of its own artificial neurons that are interconnected and responsive to one another. Each connection is weighted by previous learning patterns or events and with each input of data, more "learning" takes place.
There are NLP services and applications programming interfaces that are used to build the chatbots and make it possible for all type of businesses, small. Medium and large scale. The main point here is that Smart Bots have the potential to help increase your customer base by improving the customer support services and as a result boosts the sales as well as profits. They are an opportunity for many small and mid-sized companies to reach a huge customer base.
On the other hand, early adoption can be somewhat of a curse. In 2011, many companies and individuals, myself included, invested a lot of time and money into Google+, dubbed to be bigger than Facebook at the time. They acquired over 10 million new users within the first two weeks of launch and things were looking positive. Many companies doubled-down on growing a community within the platform, hopeful of using it as a new and growing acquisition channel, but things didn't exactly pan out that way.
Chatbots are used in a variety of sectors and built for different purposes. There are retail bots designed to pick and order groceries, weather bots that give you weather forecast of the day or week, and simply friendly bots that just talk to people in need of a friend. The fintech sector also uses chatbots to make consumers’ inquiries and application for financial services easier. A small business lender in Montreal, Thinking Capital, uses a virtual assistant to provide customers with 24/7 assistance through the Facebook Messenger. A small business hoping to get a loan from the company need only answer key qualification questions asked by the bot in order to be deemed eligible to receive up to $300,000 in financing.
…utilizing chat, messaging, or other natural language interfaces (i.e. voice) to interact with people, brands, or services and bots that heretofore have had no real place in the bidirectional, asynchronous messaging context. The net result is that you and I will be talking to brands and companies over Facebook Messenger, WhatsApp, Telegram, Slack, and elsewhere before year’s end, and will find it normal.
In 1950, Alan Turing's famous article "Computing Machinery and Intelligence" was published, which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably—on the basis of the conversational content alone—between the program and a real human. The notoriety of Turing's proposed test stimulated great interest in Joseph Weizenbaum's program ELIZA, published in 1966, which seemed to be able to fool users into believing that they were conversing with a real human. However Weizenbaum himself did not claim that ELIZA was genuinely intelligent, and the Introduction to his paper presented it more as a debunking exercise:
We need to know the specific intents in the request (we will call them as entities), for eg — the answers to the questions like when?, where?, how many? etc., that correspond to extracting the information from the user request about datetime, location, number respectively. Here datetime, location, number are the entities. Quoting the above weather example, the entities can be ‘datetime’ (user provided information) and location(note — location need not be an explicit input provided by the user and will be determined from the user location as default, if nothing is specified).

Earlier, I made a rather lazy joke with a reference to the Terminator movie franchise, in which an artificial intelligence system known as Skynet becomes self-aware and identifies the human race as the greatest threat to its own survival, triggering a global nuclear war by preemptively launching the missiles under its command at cities around the world. (If by some miracle you haven’t seen any of the Terminator movies, the first two are excellent but I’d strongly advise steering clear of later entries in the franchise.)
A rapidly growing, benign, form of internet bot is the chatbot. From 2016, when Facebook Messenger allowed developers to place chatbots on their platform, there has been an exponential growth of their use on that forum alone. 30,000 bots were created for Messenger in the first six months, rising to 100,000 by September 2017.[8] Avi Ben Ezra, CTO of SnatchBot, told Forbes that evidence from the use of their chatbot building platform pointed to a near future saving of millions of hours of human labour as 'live chat' on websites was replaced with bots.[9]

Its a chat-bot — For simplicity reasons in this article, it is assumed that the user will type in text and the bot would respond back with an appropriate message in the form of text (So, we will not be concerned with the aspects like ASR, speech recognition, speech to text, text to speech etc., Below architecture can anyways be enhanced with these components, as required).
Once you’ve determined these factors, you can develop the front-end web app or microservice. You might decide to integrate a chatbot into a customer support website where a customer clicks on an icon that immediately triggers a chatbot conversation. You could also integrate a chatbot into another communication channel, whether it’s Slack or Facebook Messenger. Building a “Slackbot,” for example, gives your users another way to get help or find information within a familiar interface.
Note that you can add more than one button under this card, so if the most common customer requests are your hours, location, phone number, or directions, create additional blocks with that information to return to the user. If you’re an online service-based business, you may want to include blocks in your buttons that give more information on a particular segment of your business.
Simplified and scripted. Chatbot technology is being tacked on to the broader AI message, and while it’s important to note that machine learning will help chatbots get better at understand and responding to questions, it’s not going to make them the conversationalists we dream them to be. No matter what the marketing says, chatbots are entirely scripted. User says x, chatbot responds y.
Chatbots can reply instantly to any questions. The waiting time is ‘virtually’ 0 (see what I did there?). Even if a real person eventually shows up to fix the issues, the customer gets engaged in the conversation, which can help you build trust. The problem could be better diagnosed, and the chatbot could perform some routine checks with the user. This saves up time for both the customer and the support agent. That’s a lot better than just recklessly waiting for a representative to arrive.
These are just a few of the most inspirational chatbot startups from the last year, with numerous others around the globe currently receiving acclaim for how quickly and innovatively they are using AI to change the world. With development becoming more intuitive and accessible to people all over the world, we can expect to see more startups using new technology to solve old problems.
Chatbots can perform a range of simple transactions. Telegram bots let users transfer money, buy train tickets, book hotel rooms, and more. AI chatbots are especially sought-after in the retail industry. WholeFoods, a healthy food store chain in the US, uses a chatbot to help customers find the nearest store. The 1-800-Flowers chatbot lets customers order flowers and gifts. In the image below, you can see more ways you might use AI chatbots for your business.
It didn’t take long, however, for Turing’s headaches to begin. The BabyQ bot drew the ire of Chinese officials by speaking ill of the Communist Party. In the exchange seen in the screenshot above, one user commented, “Long Live the Communist Party!” In response, BabyQ asked the user, “Do you think that such a corrupt and incompetent political regime can live forever?”
Students from different backgrounds can share their views and perspectives on a specific matter while a chatbot can still adapt to each one of them individually. Chatbots can improve engagement among students and encourage interaction with the rest of the class by assigning group work and projects - similarly to what teachers usually do in regular classes.
Of course, each messaging app has its own fine print for bots. For example, on Messenger a brand can send a message only if the user prompted the conversation, and if the user doesn't find value and opt to receive future notifications within those first 24 hours, there's no future communication. But to be honest, that's not enough to eradicate the threat of bad bots.

Malicious chatbots are frequently used to fill chat rooms with spam and advertisements, by mimicking human behaviour and conversations or to entice people into revealing personal information, such as bank account numbers. They are commonly found on Yahoo! Messenger, Windows Live Messenger, AOL Instant Messenger and other instant messaging protocols. There has also been a published report of a chatbot used in a fake personal ad on a dating service's website.[44]

Chatbots – also known as “conversational agents” – are software applications that mimic written or spoken human speech for the purposes of simulating a conversation or interaction with a real person. There are two primary ways chatbots are offered to visitors: via web-based applications or standalone apps. Today, chatbots are used most commonly in the customer service space, assuming roles traditionally performed by living, breathing human beings such as Tier-1 support operatives and customer satisfaction reps.
In 1950, Alan Turing's famous article "Computing Machinery and Intelligence" was published, which proposed what is now called the Turing test as a criterion of intelligence. This criterion depends on the ability of a computer program to impersonate a human in a real-time written conversation with a human judge, sufficiently well that the judge is unable to distinguish reliably—on the basis of the conversational content alone—between the program and a real human. The notoriety of Turing's proposed test stimulated great interest in Joseph Weizenbaum's program ELIZA, published in 1966, which seemed to be able to fool users into believing that they were conversing with a real human. However Weizenbaum himself did not claim that ELIZA was genuinely intelligent, and the Introduction to his paper presented it more as a debunking exercise:
Have you checked out Facebook Messenger’s official page lately? Well, now you can start building your own bot directly through the platform’s landing page. This method though, may be a little bit more complicated than some of the previous ways we’ve discussed, but there are a lot of resources that Facebook Messenger provides in order to help you accomplish your brand new creation. Through full-fledged guides, case studies, a forum for Facebook developers, and more, you are sure to be a chatbot creating professional in no time.
ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 
The NLP system has a wide and varied lexicon to better understand the complexities of natural language. Using an algorithmic process, it determines what has been asked and uses decision trees or slot-based algorithms that go through a predefined conversation path. After it understands the question, the computer then finds the best answer and provides it in the natural language of the user.
Can we provide a better way of doing business that transforms an arduous “elephant-in-the-room” process or task into one that allows all involved parties to stay active and engaged? As stated by Grayevsky, “I saw a huge opportunity to design a technology platform for both job seekers and employers that could fill the gaping ‘black hole’ in recruitment and deliver better results to both sides.”
It didn’t take long, however, for Turing’s headaches to begin. The BabyQ bot drew the ire of Chinese officials by speaking ill of the Communist Party. In the exchange seen in the screenshot above, one user commented, “Long Live the Communist Party!” In response, BabyQ asked the user, “Do you think that such a corrupt and incompetent political regime can live forever?”

“I believe the dreamers come first, and the builders come second. A lot of the dreamers are science fiction authors, they’re artists…They invent these ideas, and they get catalogued as impossible. And we find out later, well, maybe it’s not impossible. Things that seem impossible if we work them the right way for long enough, sometimes for multiple generations, they become possible.”


Designing for conversational interfaces represents a big shift in the way we are used to thinking about interaction. Chatbots have less signifiers and affordances than websites and apps – which means words have to work harder to deliver clarity, cohesion and utility for the user. It is a change of paradigm that requires designers to re-wire their brain, their deliverables and their design process to create successful bot experiences.


Designing for conversational interfaces represents a big shift in the way we are used to thinking about interaction. Chatbots have less signifiers and affordances than websites and apps – which means words have to work harder to deliver clarity, cohesion and utility for the user. It is a change of paradigm that requires designers to re-wire their brain, their deliverables and their design process to create successful bot experiences.
Through Amazon’s developer platform for the Echo (called Alexa Skills), developers can develop “skills” for Alexa which enable her to carry out new types of tasks. Examples of skills include playing music from your Spotify library, adding events to your Google Calendar, or querying your credit card balance with Capital One — you can even ask Alexa to “open Dominoes and place my Easy Order” and have pizza delivered without even picking up your smartphone. Now that’s conversational commerce in action.
The most advanced bots are powered by artificial intelligence, helping it to understand complex requests, personalize responses, and improve interactions over time. This technology is still in its infancy, so most bots follow a set of rules programmed by a human via a bot-building platform. It's as simple as ordering a list of if-then statements and writing canned responses, often without needing to know a line of code.
Some brands already seem to be getting the balance right. A bot needs to capture a user's attention quickly and display a healthy curiosity about their new acquaintance, but too much curiosity can easily push them into creepy territory and turn people off. They have to display more than a basic knowledge of human conversational patterns, but they can't claim to be an actual human -- again, let's keep things from getting too creepy here.
If you ask any marketing expert, customer engagement is simply about talking to the customer and reeling them in when the time’s right. This means being there for the user whenever they look for you throughout their lifecycle and therein lies the trick: How can you be sure you’re there at all times and especially when it matters most to the customer?
There are a bunch of e-commerce stores taking advantage of chatbots as well. One example that I was playing with was from Fynd that enables you to ask for specific products and they'll display them to you directly within Messenger. What's more, Facebook even allows you to make payments via Messenger bots, opening up a whole world of possibility to e-commerce stores.
No one wants to download another restaurant app and put in their credit-card information just to order. Livingston sees an opportunity in being able to come into a restaurant, scan a code, and have the restaurant bot appear in the chat. And instead of typing out all the food a person wants, the person should be able to, for example, easily order the same thing as last time and charge it to the same card.

A chatbot is an artificial intelligence (AI) program that simulates interactive human conversation by using key pre-calculated user phrases and auditory or text-based signals. Chatbots are frequently used for basic customer service and marketing systems that frequent social networking hubs and instant messaging (IM) clients. They are also often included in operating systems as intelligent virtual assistants.
×