An ecommerce website’s user interface is an important part of the overall application. It has amazing product pictures for shoppers to look at. It has an advanced search tool to help the shopper locate products. It has lovely buttons users can click to add products to the shopping cart. And it has forms for entering payment information or an address.
In business-to-business environments, chatbots are commonly scripted and used to respond to frequently asked questions or perform simple, repetitive calls to action. In sales, for example, a chatbot may be a quick way for sales reps to get phone numbers. Chatbots can also be used in service departments, assisting service agents in answering repetitive requests. For example, a service rep might provide the chatbot with an order number and ask when the order was shipped. Generally, once a conversation gets too complex for a chatbot, the call or text window will be transferred to a human service agent.

In this article, we shed a spotlight on 7 real-world chatbots/virtual assistants across industries that are in action and reaping value for their parent companies. From streamlined operations and saved human productivity to increased customer engagement, the following examples are worth a read if you’ve ever considered leveraging chatbot technology for your business (or are curious about the possibilities).
“There is hope that consumers will be keen on experimenting with bots to make things happen for them. It used to be like that in the mobile app world 4+ years ago. When somebody told you back then… ‘I have built an app for X’… You most likely would give it a try. Now, nobody does this. It is probably too late to build an app company as an indie developer. But with bots… consumers’ attention spans are hopefully going to be wide open/receptive again!” — Niko Bonatsos, Managing Director at General Catalyst
As retrieved from Forbes, Salesforce’s chief scientist, Richard Socher talked in a conference about his revelations of NLP and machine translation: “I can’t speak for all chatbot deployments in the world – there are some that aren’t done very well…but in our case we’ve heard very positive feedback because when a bot correctly answers questions or fills your requirements it does it very, very fast.
Niki is a personal assistant that has been developed in India to perform an impressively wide variety of tasks, including booking taxis, buses, hotels, movies and events, paying utilities and recharging your phone, and even organizing laundry pickup and delivery. The application has proven to be a huge success across India and won the Deep Tech prize at the 2017 AWS Mobility Awards.
“It’s hard to balance that urge to just dogpile the latest thing when you’re feeling like there’s a land grab or gold rush about to happen all around you and that you might get left behind. But in the end quality wins out. Everyone will be better off if there’s laser focus on building great bot products that are meaningfully differentiated.” — Ryan Block, Cofounder of Begin.com
Last, but not least coming in with the bot platform for business is FlowXO, which creates bots for Messenger, Slack, SMS, Telegraph and the web. This platform allows for creating various flexibility in bots by giving you the option to create a fully automated bot, human, or a hybrid of both. ChatBot expert Murray Newlands commented that "Where 10 years ago every company needed a website and five  years ago every company needed an app, now every company needs to embrace messaging with AI and chatbots."
I argued that it is super hard to scale a one-trick TODA into a general assistant that helps the user getting things done across multiple tasks. An intelligence assistant is arguably expected to hold an informal chit-chat with the user. It is this area where we are staring into perhaps the biggest challenge of AI. Observe how Samantha introduces herself to Joaquin Phoenix’s Ted in the clip below:

Magic, launched in early 2015, is one of the earliest examples of conversational commerce by launching one of the first all-in-one intelligent virtual assistants as a service. Unique in that the service does not even have an app (you access it purely via SMS), Magic promises to be able to handle virtually any task you send it — almost like a human executive assistant. Based on user and press accounts, Magic seems to be able to successfully carry out a variety of odd tasks from setting up flight reservations to ordering hard-to-find food items.
The evolution of artificial intelligence is now in full swing and chatbots are only a faint splash on a huge wave of progress. Today the number of users of messaging apps like WhatsApp, Slack, Skype and their analogs is skyrocketing, Facebook Messenger alone has more than 1.2 billion monthly users. With the spread of messengers, virtual chatterbots that imitate human conversations for solving various tasks are becoming increasingly in demand. Chinese WeChat bots can already set medical appointments, call a taxi, send money to friends, check in for a flight and many many other.
Haptik is one of the world's largest Conversational AI platforms reaching over 30 million devices monthly. The company has been at the forefront of the paradigm shift from apps to chatbots, having built a robust set of technology and tools that enable any type of conversational application. Our platform processed over a billion interactions to date and helps enterprises leverage the power of AI to automate critical business processes like Concierge, Customer Support, Lead Generation and E-commerce.
We then ran a second test with a very specific topic aimed at answering very specific questions that a small segment of their audience was interested in. There, the engagement was much higher (97% open rate, 52% click-through rate on average over the duration of the test). Interestingly, drop-off went wayyy down there. At the end of this test, only 0.29% of the users had unsubscribed.

Chatting with a bot should be like talking to a human that knows everything. If you're using a bot to change an airline reservation, the bot should know if you have an unused credit on your account and whether you typically pick the aisle or window seat. Artificial intelligence will continue to radically shape this front, but a bot should connect with your current systems so a shared contact record can drive personalization.
Chatbots succeed when a clear understanding of user intent drives development of both the chatbot logic and the end-user interaction. As part of your scoping process, define the intentions of potential users. What goals will they express in their input? For example, will users want to buy an airline ticket, figure out whether a medical procedure is covered by their insurance plan or determine whether they need to bring their computer in for repair? 
The bot itself is only part of a larger system that provides it with the latest data and ensures its proper operation. All of these other Azure resources — data orchestration services such as Data Factory, storage services such as Cosmos DB, and so forth — must be deployed. Azure Resource Manager provides a consistent management layer that you can access through the Azure portal, PowerShell, or the Azure CLI. For speed and consistency, it's best to automate your deployment using one of these approaches.
How can our business leverage technology to better and more often engage younger audiences with our products and services? H&M is one of several retailers experimenting with and leveraging chatbots as a  mobile marketing opportunity – according to a report by Accenture, 32 percent of the world (a large portion of the population 29 years old and younger) uses social media daily and 80 percent of that time is via mobile.
Chatting with a bot should be like talking to a human that knows everything. If you're using a bot to change an airline reservation, the bot should know if you have an unused credit on your account and whether you typically pick the aisle or window seat. Artificial intelligence will continue to radically shape this front, but a bot should connect with your current systems so a shared contact record can drive personalization.

Users want to ask questions in their own language, and have bots help them. A statement that sounds as straight-forward as “My login isn’t working! I haven’t been able to log into your on-line billing system” might sound straight forward to us, but to a bot, there’s a lot it needs to understand. Watson Conversation Services has learned from Wikipedia, and along with its deep learning techniques, it’s able to work out what the user is asking.
For starters, he was the former president of PayPal. And he once founded a mobile media monetization firm. And he also founded a company that facilitated mobile phone payments. And then he helped Facebook acquire Braintree, which invented Venmo. And then he invented Messenger’s P2P payment platform. And then he was appointed to the board of directors at Coinbase.
“It’s hard to balance that urge to just dogpile the latest thing when you’re feeling like there’s a land grab or gold rush about to happen all around you and that you might get left behind. But in the end quality wins out. Everyone will be better off if there’s laser focus on building great bot products that are meaningfully differentiated.” — Ryan Block, Cofounder of Begin.com
Telegram launched its bot API in 2015, and launched version 2.0 of its platform in April 2016, adding support for bots to send rich media and access geolocation services. As with Kik, Telegram’s bots feel spartan and lack compelling features at this point, but that could change over time. Telegram has also yet to add payment features, so there are not yet any shopping-related bots on the platform.
Whilst the payout wasn't huge within the early days of Amazon, those who got in early are now seeing huge rewards, with 38% of shoppers starting their buying journey within Amazon (source), making it the number one retail search engine. Some studies are suggesting that Amazon is responsible for 80% of e-commerce growth for publicly traded web retailers (source).

The upcoming TODA agents are good at one thing, and one thing only. As Facebook found out with the ambitious Project M, building general personal assistants that can help users in multiple tasks (cross-domain agents) is hard. Think awfully hard. Beyond the obvious increase in scope, knowledge, and vocabulary, there is no built-in data generator that feeds the hungry learning machine (sans an unlikely concerted effort to aggregate the data silos from multiple businesses). The jury is out whether the army of human agents that Project M employs can scale, even with Facebook’s kind of resources. In addition, cross-domain agents will probably need major advances in areas such as domain adaptation, transfer learning, dialog planning and management, reinforcement/apprenticeship learning, automatic dialog evaluation, etc.

Foreseeing immense potential, businesses are starting to invest heavily in the burgeoning bot economy. A number of brands and publishers have already deployed bots on messaging and collaboration channels, including HP, 1-800-Flowers, and CNN. While the bot revolution is still in the early phase, many believe 2016 will be the year these conversational interactions take off.
As people research, they want the information they need as quickly as possible and are increasingly turning to voice search as the technology advances. Email inboxes have become more and more cluttered, so buyers have moved to social media to follow the brands they really care about. Ultimately, they now have the control — the ability to opt out, block, and unfollow any brand that betrays their trust.

Oftentimes, brands have a passive approach to customer interactions. They only communicate with their audience once a consumer has contacted them first. A chatbot automatically sends a welcome notification when a person arrives on your website or social media profile making the user aware of your chatbots presence. This makes you seem more proactive, thus enhancing your brand's reputation and can even increase interactions, having a positive effect on your sales numbers, too.


The chatbot is trained to translate the input data into a desired output value. When given this data, it analyzes and forms context to point to the relevant data to react to spoken or written prompts. Looking into deep learning within AI, the machine discovers new patterns in the data without any prior information or training, then extracts and stores the pattern.

Dan uses an example of a text to speech bot that a user might operate within a car to turn windscreen wipers on and off, and lights on and off. The users’ natural language query is processed by the conversation service to work out the intent and the entity, and then using the context, replies through the dialog in a way that the user can understand.


Chatbots and virtual assistants (VAs) may be built on artificial intelligence and create customer experiences through digital personas, but the success you realize from them will depend in large part on your ability to account for the real and human aspects of their deployment, intra-organizational impact, and customer orientation. Start by treating your bots and […]

User message. Once authenticated, the user sends a message to the bot. The bot reads the message and routes it to a natural language understanding service such as LUIS. This step gets the intents (what the user wants to do) and entities (what things the user is interested in). The bot then builds a query that it passes to a service that serves information, such as Azure Search for document retrieval, QnA Maker for FAQs, or a custom knowledge base. The bot uses these results to construct a response. To give the best result for a given query, the bot might make several back-and-forth calls to these remote services.


Utility bots solve a user's problem, whatever that may be, via a user-prompted transaction. The most obvious example is a shopping bot, such as one that helps you order flowers or buy a new jacket. According to a recent HubSpot Research study, 47% of shoppers are open to buying items from a bot. But utility bots are not limited to making purchases. A utility bot could automatically book meetings by scanning your emails or notify you of the payment subscriptions you forgot you were signed up for.
Through Knowledge Graph, Google search has already become amazingly good at understanding the context and meaning of your queries, and it is getting better at natural language queries. With its massive scale in data and years of working at the very hard problems of natural language processing, the company has a clear path to making Allo’s conversational commerce capabilities second to none.
1. AI-based: these ones really rely on training and are fairly complicated to set up. You train the chatbot to understand specific topics and tell your users which topics your chatbot can engage with. AI chatbots require all sorts of fall back and intent training. For example, let’s say you built a doctor chatbot (off the top of my head because I am working on one at the moment), it would have to understand that “i have a headache” and “got a headache” and “my head hurts” are the same intent. The user is free to engage and the chatbot has to pick things up.
Cheyer explains Viv like this. Imagine you need to pick up a bottle of wine that goes well with lasagna on the way to your brother's house. If you wanted to do that yourself, you'd need to determine which wine goes well with lasagna (search #1) then find a wine store that carries it (search #2) that is on the way to your brother's house (search #3). Once you have that figured out, you have to calculate what time you need to leave to stop at the wine store on the way (search #4) and still make it to his house on time.

Other companies explore ways they can use chatbots internally, for example for Customer Support, Human Resources, or even in Internet-of-Things (IoT) projects. Overstock, for one, has reportedly launched a chatbot named Mila to automate certain simple yet time-consuming processes when requesting for a sick leave.[24] Other large companies such as Lloyds Banking Group, Royal Bank of Scotland, Renault and Citroën are now using automated online assistants instead of call centres with humans to provide a first point of contact. A SaaS chatbot business ecosystem has been steadily growing since the F8 Conference when Zuckerberg unveiled that Messenger would allow chatbots into the app.[25]


ETL. The bot relies on information and knowledge extracted from the raw data by an ETL process in the backend. This data might be structured (SQL database), semi-structured (CRM system, FAQs), or unstructured (Word documents, PDFs, web logs). An ETL subsystem extracts the data on a fixed schedule. The content is transformed and enriched, then loaded into an intermediary data store, such as Cosmos DB or Azure Blob Storage.
As ChatbotLifeexplained, developing bots is not the same as building apps. While apps specialise in a number of functions, chatbots have a bigger capacity for inputs. The trick here is to start with a simple objective and focus on doing it really well (i.e., having a minimum viable product or ‘MVP’). From that point onward, businesses can upgrade their bots.
In this article, we shed a spotlight on 7 real-world chatbots/virtual assistants across industries that are in action and reaping value for their parent companies. From streamlined operations and saved human productivity to increased customer engagement, the following examples are worth a read if you’ve ever considered leveraging chatbot technology for your business (or are curious about the possibilities).
Spot is a chatbot developed by Criminal Psychologist Julia Shaw at the University College London. Using memory science and AI, Spot doesn’t just allow users to report workplace harassment and bullying, but is capable of asking personalized, open-ended questions to help you recall details about events that made you feel uncomfortable. The application helps users process what happened, to understand whether or not they experienced harassment or discrimination and offers advice on how they can take matters further.
The fact that you can now run ads directly to Messenger is an enormous opportunity for any business. This skips the convoluted and leaky process of trying to acquire someone's email address to nurture them outside of Facebook's platform. Instead, you can retain the connection with someone inside Facebook and improve the overall conversion rates to receiving an engagement.
Forrester just released a new report on mobile and new technology priorities for marketers, based on our latest global mobile executive survey. We found out that marketers: Fail to deliver on foundational mobile experiences. Consumers’ expectations of a brand’s mobile experience have never been higher. And yet, 58% of marketers agree that their mobile services […]
A rapidly growing, benign, form of internet bot is the chatbot. From 2016, when Facebook Messenger allowed developers to place chatbots on their platform, there has been an exponential growth of their use on that forum alone. 30,000 bots were created for Messenger in the first six months, rising to 100,000 by September 2017.[8] Avi Ben Ezra, CTO of SnatchBot, told Forbes that evidence from the use of their chatbot building platform pointed to a near future saving of millions of hours of human labour as 'live chat' on websites was replaced with bots.[9]

Our team of IT marketing professionals and digital enthusiasts are passionate about semantic technology and cognitive computing and how it will transform our world. We’ll keep you posted on the latest Expert System products, solutions and services, and share the most interesting information on semantics, cognitive computing and AI from around the web, and from our rich library of white papers, customer case studies and more.
Let’s take a weather chat bot as an example to examine the capabilities of Scripted and Structured chatbots. The question “Will it rain on Sunday?” can be easily answered. However, if there is no programming for the question “Will I need an umbrella on Sunday?” then the query will not be understood by the chat bot. This is the common limitation with scripted and structured chatbots. However, in all cases, a conversational bot can only be as intelligent as the programming it has been given.
The chatbot is trained to translate the input data into a desired output value. When given this data, it analyzes and forms context to point to the relevant data to react to spoken or written prompts. Looking into deep learning within AI, the machine discovers new patterns in the data without any prior information or training, then extracts and stores the pattern.

However, since Magic simply connects you with human operators who carry our your requests, the service does not leverage AI to automate its processes, and thus the service is expensive and thus may lack mainstream potential. The company recently launched a premium service called Magic+ which gets you higher level service for $100 per hour, indicating that it sees its market among business executives and other wealthy customers.


The process of building, testing and deploying chatbots can be done on cloud-based chatbot development platforms[51] offered by cloud Platform as a Service (PaaS) providers such as Oracle Cloud Platform Yekaliva[47][28] and IBM Watson.[52][53][54] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
×