In a procedural conversation flow, you define the order of the questions and the bot will ask the questions in the order you defined. You can organize the questions into logical modules to keep the code centralized while staying focused on guiding the conversational. For example, you may design one module to contain the logic that helps the user browse for products and a separate module to contain the logic that helps the user create a new order.
Yes, witty banter is a plus. But, the ultimate mission of a bot is to provide a service people actually want to use. As long as you think of your bot as just another communication channel, your focus will be misguided. The best bots harness the micro-decisions consumers experience on a daily basis and see them as an opportunity to help. Whether it's adjusting a reservation, updating the shipping info for an order, or giving medical advice, bots provide a solution when people need it most.
Simply put, chatbots are computer programs designed to have conversations with human users. Chances are you’ve interacted with one. They answer questions, guide you through a purchase, provide technical support, and can even teach you a new language. You can find them on devices, websites, text messages, and messaging apps—in other words, they’re everywhere.

Previous generations of chatbots were present on company websites, e.g. Ask Jenn from Alaska Airlines which debuted in 2008[27] or Expedia's virtual customer service agent which launched in 2011.[27][28] The newer generation of chatbots includes IBM Watson-powered "Rocky", introduced in February 2017 by the New York City-based e-commerce company Rare Carat to provide information to prospective diamond buyers.[29][30]

In a traditional application, the user interface (UI) consists of a series of screens, and a single app or website can use one or more screens as needed to exchange information with the user. Most applications start with a main screen where users initially land, and that screen provides navigation that leads to other screens for various functions like starting a new order, browsing products, or looking for help.
A chatbot is a computer program that simulates human conversation through voice commands or text chats or both. Chatbot, short for chatterbot, is an Artificial Intelligence (AI) feature that can be embedded and used through any major messaging applications. There are a number of synonyms for chatbot, including "talkbot," "bot," "IM bot," "interactive agent" or "artificial conversation entity."
The progressive advance of technology has seen an increase in businesses moving from traditional to digital platforms to transact with consumers. Convenience through technology is being carried out by businesses by implementing Artificial Intelligence (AI) techniques on their digital platforms. One AI technique that is growing in its application and use is chatbots. Some examples of chatbot technology are virtual assistants like Amazon's Alexa and Google Assistant, and messaging apps, such as WeChat and Facebook messenger.

Magic, launched in early 2015, is one of the earliest examples of conversational commerce by launching one of the first all-in-one intelligent virtual assistants as a service. Unique in that the service does not even have an app (you access it purely via SMS), Magic promises to be able to handle virtually any task you send it — almost like a human executive assistant. Based on user and press accounts, Magic seems to be able to successfully carry out a variety of odd tasks from setting up flight reservations to ordering hard-to-find food items.
Back to our earlier example, if a bot doesn’t know the word trousers and a user corrects the input to pants, the bot will remember the connection between those two words in the future. The more words and connections that a bot is exposed to, the smarter it gets. This process is similar to that of human learning. Our capacity for memory and synthesis is part of what makes us unique, and we’re teaching our best tricks to bots.
The idea was to permit Tay to “learn” about the nuances of human conversation by monitoring and interacting with real people online. Unfortunately, it didn’t take long for Tay to figure out that Twitter is a towering garbage-fire of awfulness, which resulted in the Twitter bot claiming that “Hitler did nothing wrong,” using a wide range of colorful expletives, and encouraging casual drug use. While some of Tay’s tweets were “original,” in that Tay composed them itself, many were actually the result of the bot’s “repeat back to me” function, meaning users could literally make the poor bot say whatever disgusting remarks they wanted. 
Efforts by servers hosting websites to counteract bots vary. Servers may choose to outline rules on the behaviour of internet bots by implementing a robots.txt file: this file is simply text stating the rules governing a bot's behaviour on that server. Any bot that does not follow these rules when interacting with (or 'spidering') any server should, in theory, be denied access to, or removed from, the affected website. If the only rule implementation by a server is a posted text file with no associated program/software/app, then adhering to those rules is entirely voluntary – in reality there is no way to enforce those rules, or even to ensure that a bot's creator or implementer acknowledges, or even reads, the robots.txt file contents. Some bots are "good" – e.g. search engine spiders – while others can be used to launch malicious and harsh attacks, most notably, in political campaigns.[2]
Utility bots solve a user's problem, whatever that may be, via a user-prompted transaction. The most obvious example is a shopping bot, such as one that helps you order flowers or buy a new jacket. According to a recent HubSpot Research study, 47% of shoppers are open to buying items from a bot. But utility bots are not limited to making purchases. A utility bot could automatically book meetings by scanning your emails or notify you of the payment subscriptions you forgot you were signed up for.
ETL. The bot relies on information and knowledge extracted from the raw data by an ETL process in the backend. This data might be structured (SQL database), semi-structured (CRM system, FAQs), or unstructured (Word documents, PDFs, web logs). An ETL subsystem extracts the data on a fixed schedule. The content is transformed and enriched, then loaded into an intermediary data store, such as Cosmos DB or Azure Blob Storage.
I will not go into the details of extracting each feature value here. It can be referred from the documentation of rasa-core link that I provided above. So, assuming we extracted all the required feature values from the sample conversations in the required format, we can then train an AI model like LSTM followed by softmax to predict the next_action. Referring to the above figure, this is what the ‘dialogue management’ component does. Why LSTM is more appropriate? — As mentioned above, we want our model to be context aware and look back into the conversational history to predict the next_action. This is akin to a time-series model (pls see my other LSTM-Time series article) and hence can be best captured in the memory state of the LSTM model. The amount of conversational history we want to look back can be a configurable hyper-parameter to the model.
A malicious use of bots is the coordination and operation of an automated attack on networked computers, such as a denial-of-service attack by a botnet. Internet bots can also be used to commit click fraud and more recently have seen usage around MMORPG games as computer game bots.[citation needed] A spambot is an internet bot that attempts to spam large amounts of content on the Internet, usually adding advertising links. More than 94.2% of websites have experienced a bot attack.[2]

Chatbots have come a long way since then. They are built on AI technologies, including deep learning, natural language processing and  machine learning algorithms, and require massive amounts of data. The more an end user interacts with the bot, the better voice recognition becomes at predicting what the appropriate response is when communicating with an end user.


3. Now, since ours is a conversational AI bot, we need to keep track of the conversations happened thus far, to predict an appropriate response. For this purpose, we need a dictionary object that can be persisted with information about the current intent, current entities, persisted information that user would have provided to bot’s previous questions, bot’s previous action, results of the API call (if any). This information will constitute our input X, the feature vector. The target y, that the dialogue model is going to be trained upon will be ‘next_action’ (The next_action can simply be a one-hot encoded vector corresponding to each actions that we define in our training data).
Customer service departments in all industries are increasing their use of chatbots, and we will see usage rise even higher in the next year as companies continue to pilot or launch their own versions of the rule-based digital assistant. What are chatbots? Forrester defines them as autonomous applications that help users complete tasks through conversation.   […]
What does the Echo have to do with conversational commerce? While the most common use of the device include playing music, making informational queries, and controlling home devices, Alexa (the device’s default addressable name) can also tap into Amazon’s full product catalog as well as your order history and intelligently carry out commands to buy stuff. You can re-order commonly ordered items, or even have Alexa walk you through some options in purchasing something you’ve never ordered before.
Two trends — the exploding popularity of mobile messaging apps and advances in artificial intelligence — are coinciding to enable a new generation of tools that enable brands to communicate with customers in powerful new ways at reduced cost. Retailers and technology firms are experimenting with chatbots, powered by a combination of machine learning, natural language processing, and live operators, to provide customer service, sales support, and other commerce-related functions.
Lack contextual awareness. Not everyone has all of the data that Google has – but chatbots today lack the awareness that we expect them to have. We assume that chatbot technology will know our IP address, browsing history, previous purchases, but that is just not the case today. I would argue that many chatbots even lack basic connection to other data silos to improve their ability to answer questions.
It’s best to have very specific intents, so that you’re clear what your user wants to do, but to have broad entities – so that the intent can apply in many places. For example, changing a password is a common activity (a narrow intent), where you change your password might be many different places (broad entities). The context then personalises the conversation based on what it knows about the user, what they’re trying to achieve, and where they’re trying to do that.
Getting the remaining values (information that user would have provided to bot’s previous questions, bot’s previous action, results of the API call etc.,) is little bit tricky and here is where the dialogue manager component takes over. These feature values will need to be extracted from the training data that the user will define in the form of sample conversations between the user and the bot. These sample conversations should be prepared in such a fashion that they capture most of the possible conversational flows while pretending to be both an user and a bot.
Facebook Messenger chat bots are a way to communicate with the companies and services that you use directly through Messenger. The goal of chat bots is to minimize the time you would spend waiting on hold or sifting through automated phone menus. By using keywords and short phrases, you can get information and perform tasks all through the Messenger app. For example, you could use bots to purchase clothing, or check the weather by asking the bot questions. Bot selection is limited, but more are being added all the time. You can also interact with bots using the Facebook website.
Note that you can add more than one button under this card, so if the most common customer requests are your hours, location, phone number, or directions, create additional blocks with that information to return to the user. If you’re an online service-based business, you may want to include blocks in your buttons that give more information on a particular segment of your business.
When we open our news feed and find out about yet another AI breakthrough—IBM Watson, driverless cars, AlphaGo — the notion of TODA may feel decidedly anti-climatic. The reality is that the current AI is not quite 100% turnkey-ready for TODA. This will soon change due to two key factors: 1) businesses want it, and 2) businesses have abundant data, the fuel that the current state-of-the-art machine learning techniques need to make AI work.
Using this method, you can manage multiple funnels of content upgrades, and even convince your users to take the next step in the buyer journey directly within Messenger. In the example below I just direct the user to subscribe to content recommendations via Messenger, but you could push them to book a meeting with a sales rep, take a free trial or directly purchase your product.
Two trends — the exploding popularity of mobile messaging apps and advances in artificial intelligence — are coinciding to enable a new generation of tools that enable brands to communicate with customers in powerful new ways at reduced cost. Retailers and technology firms are experimenting with chatbots, powered by a combination of machine learning, natural language processing, and live operators, to provide customer service, sales support, and other commerce-related functions.
The process of building, testing and deploying chatbots can be done on cloud based chatbot development platforms[39] offered by cloud Platform as a Service (PaaS) providers such as Yekaliva, Oracle Cloud Platform, SnatchBot[40] and IBM Watson.[41] [42] [43] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
One of the more talked about integrations has been Taco Bell‘s announcement that it is working on a Slackbot (appropriately named Tacobot) which will not only take your Gordita Supreme order but will do it with the same “witty personality you’d expect from Taco Bell.” Consumer demand for such a service remains to be seen, but it hints at the potential for brands to leverage Slack’s platform and growing audience.
Chatbots – also known as “conversational agents” – are software applications that mimic written or spoken human speech for the purposes of simulating a conversation or interaction with a real person. There are two primary ways chatbots are offered to visitors: via web-based applications or standalone apps. Today, chatbots are used most commonly in the customer service space, assuming roles traditionally performed by living, breathing human beings such as Tier-1 support operatives and customer satisfaction reps.
Next, identify the data sources that will enable the bot to interact intelligently with users. As mentioned earlier, these data sources could contain structured, semi-structured, or unstructured data sets. When you're getting started, a good approach is to make a one-off copy of the data to a central store, such as Cosmos DB or Azure Storage. As you progress, you should create an automated data ingestion pipeline to keep this data current. Options for an automated ingestion pipeline include Data Factory, Functions, and Logic Apps. Depending on the data stores and the schemas, you might use a combination of these approaches.

It may be tempting to assume that users will perform procedural tasks one by one in a neat and orderly way. For example, in a procedural conversation flow using dialogs, the user will start at root dialog, invoke the new order dialog from there, and then invoke the product search dialog. Then the user will select a product and confirm, exiting the product search dialog, complete the order, exiting the new order dialog, and arrive back at the root dialog.


Google, the company with perhaps the greatest artificial intelligence chops and the biggest collection of data about you — both of which power effective bots — has been behind here. But it is almost certainly plotting ways to catch up. Google Now, its personal assistant system built within Android, serves many functions of the new wave of bots, but has had hiccups. The company is reportedly working on a chatbot that will live in a mobile messaging product and is experimenting with ways to integrate Now deeper with search.
Search for the bot you want to add. At the time of this writing, there are about a dozen bots available, with more being added every day. Chat bots are available for customer service, news, ordering, and more, depending on the company that releases it. For example, you could get news from the CNN bot and order flowers from the 1-800-flowers bot. The process for finding a bot varies depending on your device:[1]

“To be honest, I’m a little worried about the bot hype overtaking the bot reality,” said M.G. Siegler, a partner with GV, the investment firm formerly known as Google Ventures. “Yes, the high level promise of what bots can offer is great. But this isn’t going to happen overnight. And it’s going to take a lot of experimentation and likely bot failure before we get there.”
Simplified and scripted. Chatbot technology is being tacked on to the broader AI message, and while it’s important to note that machine learning will help chatbots get better at understand and responding to questions, it’s not going to make them the conversationalists we dream them to be. No matter what the marketing says, chatbots are entirely scripted. User says x, chatbot responds y.
Yes, witty banter is a plus. But, the ultimate mission of a bot is to provide a service people actually want to use. As long as you think of your bot as just another communication channel, your focus will be misguided. The best bots harness the micro-decisions consumers experience on a daily basis and see them as an opportunity to help. Whether it's adjusting a reservation, updating the shipping info for an order, or giving medical advice, bots provide a solution when people need it most.
All of these conversational technologies employ natural-language-recognition capabilities to discern what the user is saying, and other sophisticated intelligence tools to determine what he or she truly needs to know. These technologies are beginning to use machine learning to learn from interactions and improve the resulting recommendations and responses.

In the early 90’s, the Turing test, which allows determining the possibility of thinking by computers, was developed. It consists in the following. A person talks to both the person and the computer. The goal is to find out who his interlocutor is — a person or a machine. This test is carried out in our days and many conversational programs have coped with it successfully.
These are one of the major tools applied in machine learning. They are brain-inspired processing tools that actually replicate how humans learn. And now that we’ve successfully replicated the way we learn, these systems are capable of taking that processing power to a level where even greater volumes of more complex data can be understood by the machine.
In our research, we collaborate with a strong network of national and international partners from academia and industry. We aim to bring together different people with different skill sets and expertise to engage in innovative research projects and to strengthen the exchange between research and practice. Our partnerships can take various forms, including project-based collaboration, research scholarships, and publicly funded projects.

This reference architecture describes how to build an enterprise-grade conversational bot (chatbot) using the Azure Bot Framework. Each bot is different, but there are some common patterns, workflows, and technologies to be aware of. Especially for a bot to serve enterprise workloads, there are many design considerations beyond just the core functionality. This article covers the most essential design aspects, and introduces the tools needed to build a robust, secure, and actively learning bot.

Consumers really don’t like your chatbot. It’s not exactly a relationship built to last — a few clicks here, a few sentences there — but Forrester Analytics data shows us very clearly that, to consumers, your chatbot isn’t exactly “swipe right” material. That’s unfortunate, because using a chatbot for customer service can be incredibly effective when done […]
By Ina|2019-04-01T16:05:49+02:00March 21st, 2017|Categories: Automation, Chatbots & AI|Tags: AI, artificial intelligence, automated customer communication, Automation, Bot, bots, chatbot, Chatbots, Customized Chatbots, Facebook Messenger, how do chatbots work, Instant Messaging, machine learning, onlim, rules, what are chatbots|Comments Off on How Do Chatbots Work?

As discussed earlier here also, each sentence is broken down into different words and each word then is used as input for the neural networks. The weighted connections are then calculated by different iterations through the training data thousands of times. Each time improving the weights to making it accurate. The trained data of neural network is a comparable algorithm more and less code. When there is a comparably small sample, where the training sentences have 200 different words and 20 classes, then that would be a matrix of 200×20. But this matrix size increases by n times more gradually and can cause a huge number of errors. In this kind of situations, processing speed should be considerably high.


Die Herausforderung bei der Programmierung eines Chatbots liegt in der sinnvollen Zusammenstellung der Erkennungen. Präzise Erkennungen für spezielle Fragen werden dabei ergänzt durch globale Erkennungen, die sich nur auf ein Wort beziehen und als Fallback dienen können (der Bot erkennt grob das Thema, aber nicht die genaue Frage). Manche Chatbot-Programme unterstützen die Entwicklung dabei über Priorisierungsränge, die einzelnen Antworten zuzuordnen sind. Zur Programmierung eines Chatbots werden meist Entwicklungsumgebungen verwendet, die es erlauben, Fragen zu kategorisieren, Antworten zu priorisieren und Erkennungen zu verwalten[5][6]. Dabei lassen manche auch die Gestaltung eines Gesprächskontexts zu, der auf Erkennungen und möglichen Folgeerkennungen basiert („Möchten Sie mehr darüber erfahren?“). Ist die Wissensbasis aufgebaut, wird der Bot in möglichst vielen Trainingsgesprächen mit Nutzern der Zielgruppe optimiert[7]. Fehlerhafte Erkennungen, Erkennungslücken und fehlende Antworten lassen sich so erkennen[8]. Meist bietet die Entwicklungsumgebung Analysewerkzeuge, um die Gesprächsprotokolle effizient auswerten zu können[9]. Ein guter Chatbot erreicht auf diese Weise eine mittlere Erkennungsrate von mehr als 70 % der Fragen. Er wird damit von den meisten Nutzern als unterhaltsamer Gegenpart akzeptiert.
This kind of thinking has lead me to develop a bot where the focus is as a medium for content rather than a subsitute for intelligence. So users create content much as conventional author, (but with text stored in spreadsheets rather than anywhere else). Very little is expected from the bot in terms of human behavious such as “learning”, “empathy”, “memory” and character”. Does it work?

According to the Journal of Medical Internet Research, "Chatbots are [...] increasingly used in particular for mental health applications, prevention and behavior change applications (such as smoking cessation or physical activity interventions).".[48] They have been shown to serve as a cost-effective and accessible therapeutic agents for indications such as depression and anxiety.[49] A conversational agent called Woebot has been shown to significantly reduce depression in young adults.[50]
×