For designing a chatbot conversation, you can refer this blog — “How to design a conversation for chatbots.” Chatbot interactions are segmented into structured and unstructured interactions. As the name suggests, the structured type is more about the logical flow of information, including menus, choices, and forms into account. The unstructured conversation flow includes freestyle plain text. Conversations with family, colleagues, friends and other acquaintances fall into this segment. Developing scripts for these messages will follow suit. While developing the script for messages, it is important to keep the conversation topics close to the purpose served by the chatbot. For the designer, interpreting user answers is important to develop scripts for a conversational user interface. The designer also turns their attention to close-ended conversations that are easy to handle and open-ended conversations that allow customers to communicate naturally.
Alexander J Porter is Head of Copy for Paperclip Digital - Sydney’s boutique agency with bold visions. Bringing a creative flair to everything that he does, he wields words to weave magic connections between brands and their buyers. With extensive experience as a content writer, he is constantly driven to explore the way language can strike consumers like lightning.
The process of building a chatbot can be divided into two main tasks: understanding the user's intent and producing the correct answer. The first task involves understanding the user input. In order to properly understand a user input in a free text form, a Natural Language Processing Engine can be used.[36] The second task may involve different approaches depending on the type of the response that the chatbot will generate.
While messaging and voice interfaces are central components, they fit into a larger picture of increasing infusion of technology into our daily lives, which in turn is unlocking new potential for brand-to-consumer interaction. The fact is, technology overall is becoming more deeply woven into our lives, and the entire ecosystem is enjoying tighter cohesion through the increasing availability and sophistication of APIs. Smart companies are finding new and innovative touch points with consumers that are contextual, relevant, highly personal, and yes, conversational. Commerce is becoming not only more conversational but more ubiquitous and seamlessly integrated into our lives, and the way we interact with brands will be forever changed as a result.

The educators or class organizers can opt for chatbots to simplify daily routine tasks. Chatbots may serve as a helping hand to the teacher in dealing with the daily queries by allowing bots to answer the questions of students on a daily basis, or perhaps even check their homework. Eventually, they offer teachers more time to work with their students on a one-by-one basis.

This was a strategy eBay deployed for holiday gift-giving in 2018. The company recognized that purchasing gifts for friends and family isn’t necessarily a simple task. For many of their customers, selecting gifts had become a stressful and arduous process, especially when they didn’t have a particular item in mind. In response to this feeling, eBay partnered with Facebook Messenger to introduce ShopBot.
ELIZA's key method of operation (copied by chatbot designers ever since) involves the recognition of cue words or phrases in the input, and the output of corresponding pre-prepared or pre-programmed responses that can move the conversation forward in an apparently meaningful way (e.g. by responding to any input that contains the word 'MOTHER' with 'TELL ME MORE ABOUT YOUR FAMILY'). Thus an illusion of understanding is generated, even though the processing involved has been merely superficial. ELIZA showed that such an illusion is surprisingly easy to generate, because human judges are so ready to give the benefit of the doubt when conversational responses are capable of being interpreted as "intelligent".
3. Now, since ours is a conversational AI bot, we need to keep track of the conversations happened thus far, to predict an appropriate response. For this purpose, we need a dictionary object that can be persisted with information about the current intent, current entities, persisted information that user would have provided to bot’s previous questions, bot’s previous action, results of the API call (if any). This information will constitute our input X, the feature vector. The target y, that the dialogue model is going to be trained upon will be ‘next_action’ (The next_action can simply be a one-hot encoded vector corresponding to each actions that we define in our training data).
Chatbots have been used in instant messaging (IM) applications and online interactive games for many years but have recently segued into business-to-consumer (B2C) and business-to-business (B2B) sales and services. Chatbots can be added to a buddy list or provide a single game player with an entity to interact with while awaiting other "live" players. If the bot is sophisticated enough to pass the Turing test, the person may not even know they are interacting with a computer program.
Prashant Sridharan, Twitter’s global director of developer relations says: “I’ve seen a lot of hyperbole around bots as the new apps, but I don’t know if I believe that. I don’t think we’re going to see this mass exodus of people stopping building apps and going to build bots. I think they’re going to build bots in addition to the app that they have or the service they provide,” as reported by re/code.
A virtual assistant is an app that comprehends natural, ordinary language voice commands and carries out tasks for the users. Well-known virtual assistants include Amazon Alexa, Apple’s Siri, Google Now and Microsoft’s Cortana. Also, virtual assistants are generally cloud-based programs so they need internet-connected devices and/or applications in order to work. Virtual assistants can perform tasks like adding calendar appointments, controlling and checking the status of a smart home, sending text messages, and getting directions.
“The chat space is sort of the last unpolluted space [on your phone],” said Sam Mandel, who works at the startup studio Betaworks and is also building a weather bot for Slack called Poncho. “It’s like the National Park of people’s online experience. Right now, the way people use chat services, it’s really a good private space that you control.” (That, of course, could quickly go sour if early implementations are too spammy or useless.)

According to this study by Petter Bae Brandtzaeg, “the real buzz about this technology did not start before the spring of 2016. Two reasons for the sudden and renewed interest in chatbots were [number one] massive advances in artificial intelligence (AI) and a major usage shift from online social networksto mobile messaging applications such as Facebook Messenger, Telegram, Slack, Kik, and Viber.”


With last year’s refresh of AppleTV, Apple brought its Siri voice assistant to the center of the UI. You can now ask Siri to play your favorite TV shows, check the weather, search for and buy specific types of movies, and a variety of other specific tasks. Although far behind Amazon’s Echo in terms of breadth of functionality, Apple will no doubt expand Siri’s integration into AppleTV, and its likely that the company will introduce a new version of AppleTV that more directly competes with the Echo, perhaps with a voice remote control that is always listening for commands.
Shane Mac, CEO of San Francisco-based Assist,warned from challenges businesses face when trying to implement chatbots into their support teams: “Beware though, bots have the illusion of simplicity on the front end but there are many hurdles to overcome to create a great experience. So much work to be done. Analytics, flow optimization, keeping up with ever changing platforms that have no standard.
Efforts by servers hosting websites to counteract bots vary. Servers may choose to outline rules on the behaviour of internet bots by implementing a robots.txt file: this file is simply text stating the rules governing a bot's behaviour on that server. Any bot that does not follow these rules when interacting with (or 'spidering') any server should, in theory, be denied access to, or removed from, the affected website. If the only rule implementation by a server is a posted text file with no associated program/software/app, then adhering to those rules is entirely voluntary – in reality there is no way to enforce those rules, or even to ensure that a bot's creator or implementer acknowledges, or even reads, the robots.txt file contents. Some bots are "good" – e.g. search engine spiders – while others can be used to launch malicious and harsh attacks, most notably, in political campaigns.[2]
At a high level, a conversational bot can be divided into the bot functionality (the "brain") and a set of surrounding requirements (the "body"). The brain includes the domain-aware components, including the bot logic and ML capabilities. Other components are domain agnostic and address non-functional requirements such as CI/CD, quality assurance, and security.

The most advanced bots are powered by artificial intelligence, helping it to understand complex requests, personalize responses, and improve interactions over time. This technology is still in its infancy, so most bots follow a set of rules programmed by a human via a bot-building platform. It's as simple as ordering a list of if-then statements and writing canned responses, often without needing to know a line of code.
It’s best to have very specific intents, so that you’re clear what your user wants to do, but to have broad entities – so that the intent can apply in many places. For example, changing a password is a common activity (a narrow intent), where you change your password might be many different places (broad entities). The context then personalises the conversation based on what it knows about the user, what they’re trying to achieve, and where they’re trying to do that.
For every question or instruction input to the conversational bot, there must exist a specific pattern in the database to provide a suitable response. Where there are several combinations of patterns available, and a hierarchical pattern is created. In these cases, algorithms are used to reduce the classifiers and generate a structure that is more manageable. This is the “reductionist” approach—or, in other words, to have a simplified solution, it reduces the problem.

By Ina|2019-04-01T16:05:49+02:00March 21st, 2017|Categories: Automation, Chatbots & AI|Tags: AI, artificial intelligence, automated customer communication, Automation, Bot, bots, chatbot, Chatbots, Customized Chatbots, Facebook Messenger, how do chatbots work, Instant Messaging, machine learning, onlim, rules, what are chatbots|Comments Off on How Do Chatbots Work?

These days, checking the headlines over morning coffee is as much about figuring out if we should be hunkering down in the basement preparing for imminent nuclear annihilation as it is about keeping up with the day’s headlines. Unfortunately, even the most diligent newshounds may find it difficult to distinguish the signal from the noise, which is why NBC launched its NBC Politics Bot on Facebook Messenger shortly before the U.S. presidential election in 2016.


With natural language processing (NLP), a bot can understand what a human is asking. The computer translates the natural language of a question into its own artificial language. It breaks down human inputs into coded units and uses algorithms to determine what is most likely being asked of it. From there, it determines the answer. Then, with natural language generation (NLG), it creates a response. NLG software allows the bot to construct and provide a response in the natural language format.
The promise of artificial intelligence (AI) has permeated across the enterprise giving hopes of amping up automation, enriching insights, streamlining processes, augmenting workers, and in many ways making our lives as consumers, employees, and customers a whole lot better. Senior management salivates over the exponential gains AI is supposed to deliver to their business. Kumbayah […]

Furthermore, major banks today are facing increasing pressure to remain competitive as challenger banks and fintech startups crowd the industry. As a result, these banks should consider implementing chatbots wherever human employees are performing basic and time-consuming tasks. This would cut down on salary and benefit costs, improve back-office efficiency, and deliver better customer care.
I've come across this challenge many times, which has made me very focused on adopting new channels that have potential at an early stage to reap the rewards. Just take video ads within Facebook as an example. We're currently at a point where video ads are reaching their peak; cost is still relatively low and engagement is high, but, like with most ad platforms, increased competition will drive up those prices and make it less and less viable for smaller companies (and larger ones) to invest in it.
The bot itself is only part of a larger system that provides it with the latest data and ensures its proper operation. All of these other Azure resources — data orchestration services such as Data Factory, storage services such as Cosmos DB, and so forth — must be deployed. Azure Resource Manager provides a consistent management layer that you can access through the Azure portal, PowerShell, or the Azure CLI. For speed and consistency, it's best to automate your deployment using one of these approaches.
“Utility gets something done following a prompt. At a higher level the more entertainment-related chatbots are able to answer all questions and get things done. Siri and Cortana you can have small talk with, as well as getting things done, so they are much harder to build. They took years and years of giant company’s efforts. Different companies that don’t have those resources, like Facebook, will build more constrained utility bots.”
aLVin is built on the foundation of Nuance’s Nina, the intelligent multichannel virtual assistant that leverages natural language understanding (NLU) and cognitive computing capabilities. aLVin interacts with brokers to better understand “intent” and deliver the right information 24/7; the chatbot was built with extensive knowledge of LV=Broker’s products, which accelerated the process of being able to answer more questions and direct brokers to the right products early on
As the above chart (source) illustrates, email click-rate has been steadily declining. Whilst open rates seem to be increasing - largely driven by mobile - the actual engagement from email is nosediving. Not only that, but it's becoming more and more difficult to even reach someone's email inbox; Google's move to separate out promotional emails into their 'promotions' tab and increasing problems of email deliverability have been top reasons behind this.

Chatfuel is one of the leading chatbot development platforms to develop chatbots for Facebook Messenger. One of the main reasons of Chatfuel’s popularity is easy to use interface. No knowledge of programming is required to create basic chatbot. People with non-technical background too can create bots using the platform and launch on their Facebook page.…

How: this involves creating a basic content block within Chatfuel that has a discount code within it. Instead of giving all users of the bot the same experience, you can direct them through to specific parts of the conversation (or 'blocks'). Using the direct link to your content block, you'll be able to create CTAs on your website that direct people straight into Messenger to get a discount code (more info here).


Designing for conversational interfaces represents a big shift in the way we are used to thinking about interaction. Chatbots have less signifiers and affordances than websites and apps – which means words have to work harder to deliver clarity, cohesion and utility for the user. It is a change of paradigm that requires designers to re-wire their brain, their deliverables and their design process to create successful bot experiences.
In so many ways I think chatbots are only just getting started – their potential is much underestimated at present. A big challenge is for chatbots mature so that they do more than is possible as a result of content entry wizards. If your content is created with a few easy clicks, it is unlikely to be much inspiration to anyone – and to date, despite much work in the field, the ability to emulated the creative open ended nature of real intellingence has seen only very partial success.
To envision the future of chatbots/virtual assistants, we need to take a quick trip down memory lane. Remember Clippy? Love him or hate him, he’s ingrained in our memory as the little assistant who couldn’t (sorry, Clippy.).  But someday, this paper clip could be the chosen one. Imagine with me if you will a support agent speaking with a customer over the phone, or even chat support. Clippy could be listening in, reviewing the questions the customer is posing, and proactively providing relevant content to the support agent. Instead of digging around from system to system, good ‘ole Clippy would have their back, saving them the trouble of hunting down relevant information needed for the task at hand.
A chatbot is a computer program that simulates human conversation through voice commands or text chats or both. Chatbot, short for chatterbot, is an Artificial Intelligence (AI) feature that can be embedded and used through any major messaging applications. There are a number of synonyms for chatbot, including "talkbot," "bot," "IM bot," "interactive agent" or "artificial conversation entity."
×