ELIZA's key method of operation (copied by chatbot designers ever since) involves the recognition of cue words or phrases in the input, and the output of corresponding pre-prepared or pre-programmed responses that can move the conversation forward in an apparently meaningful way (e.g. by responding to any input that contains the word 'MOTHER' with 'TELL ME MORE ABOUT YOUR FAMILY'). Thus an illusion of understanding is generated, even though the processing involved has been merely superficial. ELIZA showed that such an illusion is surprisingly easy to generate, because human judges are so ready to give the benefit of the doubt when conversational responses are capable of being interpreted as "intelligent".
Nowadays a high majority of high-tech banking organizations are looking for integration of automated AI-based solutions such as chatbots in their customer service in order to provide faster and cheaper assistance to their clients becoming increasingly technodexterous. In particularly, chatbots can efficiently conduct a dialogue, usually substituting other communication tools such as email, phone, or SMS. In banking area their major application is related to quick customer service answering common requests, and transactional support.
“Today, chat isn’t yet being perceived as an engagement driver, but more of a customer service operation[…]” Horwitz writes for Chatbots Magazine. “Brands and marketers can start collecting data around the engagement and interaction of end users. Those that are successful could see higher brand recognition, turning user-level mobile moments into huge returns.”
Consider why someone would turn to a bot in the first place. According to an upcoming HubSpot research report, of the 71% of people willing to use messaging apps to get customer assistance, many do it because they want their problem solved, fast. And if you've ever used (or possibly profaned) Siri, you know there's a much lower tolerance for machines to make mistakes.
Malicious chatbots are frequently used to fill chat rooms with spam and advertisements, by mimicking human behavior and conversations or to entice people into revealing personal information, such as bank account numbers. They are commonly found on Yahoo! Messenger, Windows Live Messenger, AOL Instant Messenger and other instant messaging protocols. There has also been a published report of a chatbot used in a fake personal ad on a dating service's website.[55]
“Major shifts on large platforms should be seen as an opportunities for distribution. That said, we need to be careful not to judge the very early prototypes too harshly as the platforms are far from complete. I believe Facebook’s recent launch is the beginning of a new application platform for micro application experiences. The fundamental idea is that customers will interact with just enough UI, whether conversational and/or widgets, to be delighted by a service/brand with immediate access to a rich profile and without the complexities of installing a native app, all fueled by mature advertising products. It’s potentially a massive opportunity.” — Aaron Batalion, Partner at Lightspeed Venture Partners
Simple chatbots, or bots, are easy to build. In fact, many coders have automated bot-building processes and templates. The majority of these processes follow simple code formulas that the designer plans, and the bots provide the responses coded into it—and only those responses. Simplistic bots (built in five minutes or less) typically respond to one or two very specific commands.
2a : a computer program that performs automatic repetitive tasks : agent sense 5 Several shopping "bots" will track down prices for on-line merchandise from a variety of vendors.— Sam Vincent Meddis especially : one designed to perform a malicious action These bot programs churn away all day and night, prodding at millions of random IP addresses looking for holes to crawl through. — Jennifer Tanaka
2. Flow-based: these work on user interaction with buttons and text. If you have used Matthew’s chatbot, that is a flow-based chatbot. The chatbot asks a question then offers options in the form of buttons (Matthew’s has a yes/no option). These are more limited, but you get the possibility of really driving down the conversation and making sure your users don’t stray off the path.
Chatbots can direct customers to a live agent if the AI can’t settle the matter. This lets human agents focus their efforts on the heavy lifting. AI chatbots also increase employee productivity. Globe Telecom automated their customer service via Messenger and saw impressive results. The company increased employee productivity by 3.5 times. And their customer satisfaction increased by 22 percent.
There are obvious revenue opportunities around subscriptions, advertising and commerce. If bots are designed to save you time that you’d normally spend on mundane tasks or interactions, it’s possible they’ll seem valuable enough to justify a subscription fee. If bots start to replace some of the functions that you’d normally use a search engine like Google for, it’s easy to imagine some sort of advertising component. Or if bots help you shop, the bot-maker could arrange for a commission.
“Beware though, bots have the illusion of simplicity on the front end but there are many hurdles to overcome to create a great experience. So much work to be done. Analytics, flow optimization, keeping up with ever changing platforms that have no standard. For deeper integrations and real commerce like Assist powers, you have error checking, integrations to APIs, routing and escalation to live human support, understanding NLP, no back buttons, no home button, etc etc. We have to unlearn everything we learned the past 20 years to create an amazing experience in this new browser.” — Shane Mac, CEO of Assist
I argued that it is super hard to scale a one-trick TODA into a general assistant that helps the user getting things done across multiple tasks. An intelligence assistant is arguably expected to hold an informal chit-chat with the user. It is this area where we are staring into perhaps the biggest challenge of AI. Observe how Samantha introduces herself to Joaquin Phoenix’s Ted in the clip below:
24/7 digital support. An instant and always accessible assistant is assumed by the more and more digital consumer of the new era.[34] Unlike humans, chatbots once developed and installed don't have a limited workdays, holidays or weekends and are ready to attend queries at any hour of the day. It helps to the customer to avoid waiting of a company's agent to be available. Thus, the customer doesn't have to wait for the company executive to help them. This also lets companies keep an eye on the traffic during the non-working hours and reach out to them later.[41]
Now, with the rise of website chatbots, this trend of two-way conversations can be taken to a whole new level. Conversational marketing can be done across many channels, such as over the phone or via SMS. However, an increasing number of companies are leveraging social media to drive their conversational marketing strategy to distinguish their brand and solidify their brand’s voice and values. When most people refer to conversational marketing, they’re talking about interactions started using chatbots and live chat – that move to personal conversations.
“Bots go bust” — so went the first of the five AI startup predictions in 2017 by Bradford Cross, countering some recent excitement around conversational AI (see for example O’Reilly’s “Why 2016 is shaping up to be the Year of the Bot”). The main argument was that social intelligence, rather than artificial intelligence is lacking, rendering bots utilitarian and boring.
Die meisten Chatbots greifen auf eine vorgefertigte Datenbank, die sog. Wissensdatenbank mit Antworten und Erkennungsmustern, zurück. Das Programm zerlegt die eingegebene Frage zuerst in Einzelteile und verarbeitet diese nach vorgegebenen Regeln. Dabei können Schreibweisen harmonisiert (Groß- und Kleinschreibung, Umlaute etc.), Satzzeichen interpretiert und Tippfehler ausgeglichen werden (Preprocessing). Im zweiten Schritt erfolgt dann die eigentliche Erkennung der Frage. Diese wird üblicherweise über Erkennungsmuster gelöst, manche Chatbots erlauben darüber hinaus die Verschachtelung verschiedener Mustererkennungen über sogenannte Makros. Wird eine zur Frage passende Antwort erkannt, kann diese noch angepasst werden (beispielsweise können skriptgesteuert berechnete Daten eingefügt werden – „In Ulm sind es heute 37 °C.“). Diesen Vorgang nennt man Postprocessing. Die daraus entstandene Antwort wird dann ausgegeben. Moderne kommerzielle Chatbot-Programme erlauben darüber hinaus den direkten Zugriff auf die gesamte Verarbeitung über eingebaute Skriptsprachen und Programmierschnittstellen.
I argued that it is super hard to scale a one-trick TODA into a general assistant that helps the user getting things done across multiple tasks. An intelligence assistant is arguably expected to hold an informal chit-chat with the user. It is this area where we are staring into perhaps the biggest challenge of AI. Observe how Samantha introduces herself to Joaquin Phoenix’s Ted in the clip below:
There are several defined conversational branches that the bots can take depending on what the user enters, but the primary goal of the app is to sell comic books and movie tickets. As a result, the conversations users can have with Star-Lord might feel a little forced. One aspect of the experience the app gets right, however, is the fact that the conversations users can have with the bot are interspersed with gorgeous, full-color artwork from Marvel’s comics. 
As digital continues to rewrite the rules of engagement across industries and markets, a new competitive reality is emerging: “Being digital” soon won’t be enough. Organizations will use artificial intelligence and other technologies to help them make faster, more informed decisions, become far more efficient, and craft more personalized and relevant experiences for both customers and employees.
Unlike Tay, Xiaoice remembers little bits of conversation, like a breakup with a boyfriend, and will ask you how you're feeling about it. Now, millions of young teens are texting her every day to help cheer them up and unburden their feelings — and Xiaoice remembers just enough to help keep the conversation going. Young Chinese people are spending hours chatting with Xiaoice, even telling the bot "I love you".

You may remember Facebook’s big chatbot push in 2016 –  when they announced that they were opening up the Messenger platform to chatbots of all varieties. Every organization suddenly needed to get their hands on the technology. The idea of having conversational chatbot technology was enthralling, but behind all the glitz, glamour and tech sex appeal, was something a little bit less exciting. To quote Gizmodo writer, Darren Orf:

To be more specific, understand why the client wants to build a chatbot and what the customer wants their chatbot to do. Finding answers to this query will guide the designer to create conversations aimed at meeting end goals. When the designer knows why the chatbot is being built, they are better placed to design the conversation with the chatbot.
Some bots communicate with other users of Internet-based services, via instant messaging (IM), Internet Relay Chat (IRC), or another web interface such as Facebook Bots and Twitterbots. These chatterbots may allow people to ask questions in plain English and then formulate a proper response. These bots can often handle many tasks, including reporting weather, zip-code information, sports scores, converting currency or other units, etc.[citation needed] Others are used for entertainment, such as SmarterChild on AOL Instant Messenger and MSN Messenger.
Les premières formes historiques de chatbots ont été utilisées sous forme d’agents virtuels mis à disposition sur les sites web et utilisant le plus souvent une image ou un avatar humain. Le terme de chatbot est désormais principalement utilisé pour désigner les chatbots proposés sur les réseaux sociaux et notamment les chatbots Facebook Messenger ou ceux intégrés au sein d’applications mobiles ou sites web. Appliqués au domaine des enceintes intelligentes et autres assistants intelligents, les chatbots peuvent devenir des voicebots.

Students from different backgrounds can share their views and perspectives on a specific matter while a chatbot can still adapt to each one of them individually. Chatbots can improve engagement among students and encourage interaction with the rest of the class by assigning group work and projects - similarly to what teachers usually do in regular classes.
The process of building, testing and deploying chatbots can be done on cloud based chatbot development platforms[39] offered by cloud Platform as a Service (PaaS) providers such as Yekaliva, Oracle Cloud Platform, SnatchBot[40] and IBM Watson.[41] [42] [43] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
An AI-powered chatbot is a smarter version of a chatbot (a machine that has the ability to communicate with humans via text or audio). It uses natural language processing (NLP) and machine learning (ML) to get a better understanding of the intent of humans it interacts with. Also, its purpose is to provide a natural, as near human-level communication as possible.
With the AI future closer to becoming a reality, companies need to begin preparing to join that reality—or risk getting left behind. Bots are a small, manageable first step toward becoming an intelligent enterprise that can make better decisions more quickly, operate more efficiently, and create the experiences that keep customers and employees engaged.
Chatbots can strike up a conversation with any customer about any issue at any time of day. They engage in friendly interactions with customers. Besides, virtual assistants only give a bit of information at a time. This way they don’t tire customers with irrelevant and unnecessary information. Chatbots can maintain conversations and keep customers on your website longer.

The trained neural network is less code than an comparable algorithm but it requires a potentially large matrix of “weights”. In a relatively small sample, where the training sentences have 150 unique words and 30 classes this would be a matrix of 150x30. Imagine multiplying a matrix of this size 100,000 times to establish a sufficiently low error rate. This is where processing speed comes in.
One of the more talked about integrations has been Taco Bell‘s announcement that it is working on a Slackbot (appropriately named Tacobot) which will not only take your Gordita Supreme order but will do it with the same “witty personality you’d expect from Taco Bell.” Consumer demand for such a service remains to be seen, but it hints at the potential for brands to leverage Slack’s platform and growing audience.
Before you even write a single line of code, it's important to write a functional specification so the development team has a clear idea of what the bot is expected to do. The specification should include a reasonably comprehensive list of user inputs and expected bot responses in various knowledge domains. This living document will be an invaluable guide for developing and testing your bot.
Prashant Sridharan, Twitter’s global director of developer relations says: “I’ve seen a lot of hyperbole around bots as the new apps, but I don’t know if I believe that. I don’t think we’re going to see this mass exodus of people stopping building apps and going to build bots. I think they’re going to build bots in addition to the app that they have or the service they provide,” as reported by re/code.
Chatbots succeed when a clear understanding of user intent drives development of both the chatbot logic and the end-user interaction. As part of your scoping process, define the intentions of potential users. What goals will they express in their input? For example, will users want to buy an airline ticket, figure out whether a medical procedure is covered by their insurance plan or determine whether they need to bring their computer in for repair? 

All of these conversational technologies employ natural-language-recognition capabilities to discern what the user is saying, and other sophisticated intelligence tools to determine what he or she truly needs to know. These technologies are beginning to use machine learning to learn from interactions and improve the resulting recommendations and responses.


The field of chatbots is continually growing with new technology advancements and software improvements. Staying up to date with the latest chatbot news is important to stay on top of this rapidly growing industry. We cover the latest in artificial intelligence news, chatbot news, computer vision news, machine learning news, and natural language processing news, speech recognition news, and more.

As retrieved from Forbes, Salesforce’s chief scientist, Richard Socher talked in a conference about his revelations of NLP and machine translation: “I can’t speak for all chatbot deployments in the world – there are some that aren’t done very well…but in our case we’ve heard very positive feedback because when a bot correctly answers questions or fills your requirements it does it very, very fast.
When we open our news feed and find out about yet another AI breakthrough—IBM Watson, driverless cars, AlphaGo — the notion of TODA may feel decidedly anti-climatic. The reality is that the current AI is not quite 100% turnkey-ready for TODA. This will soon change due to two key factors: 1) businesses want it, and 2) businesses have abundant data, the fuel that the current state-of-the-art machine learning techniques need to make AI work.
Your first question is how much of it does she want? 1 litre? 500ml? 200? She tells you she wants a 1 litre Tropicana 100% Orange Juice. Now you know that regular Tropicana is easily available, but 100% is hard to come by, so you call up a few stores beforehand to see where it’s available. You find one store that’s pretty close by, so you go back to your mother and tell her you found what she wanted. It’s $3 and after asking her for the money, you go on your way.

Although NBC Politics Bot was a little rudimentary in terms of its interactions, this particular application of chatbot technology could well become a lot more popular in the coming years – particularly as audiences struggle to keep up with the enormous volume of news content being published every day. The bot also helped NBC determine what content most resonated with users, which the network will use to further tailor and refine its content to users in the future.
The upcoming TODA agents are good at one thing, and one thing only. As Facebook found out with the ambitious Project M, building general personal assistants that can help users in multiple tasks (cross-domain agents) is hard. Think awfully hard. Beyond the obvious increase in scope, knowledge, and vocabulary, there is no built-in data generator that feeds the hungry learning machine (sans an unlikely concerted effort to aggregate the data silos from multiple businesses). The jury is out whether the army of human agents that Project M employs can scale, even with Facebook’s kind of resources. In addition, cross-domain agents will probably need major advances in areas such as domain adaptation, transfer learning, dialog planning and management, reinforcement/apprenticeship learning, automatic dialog evaluation, etc.

At this year’s I/O, Google announced its own Facebook Messenger competitor called Allo. Apart from some neat features around privacy and self-expression, the really interesting part of Allo is @google, the app’s AI digital assistant. Google’s assistant is interesting because the company has about a decades-long head start in machine learning applied to search, so its likely that Allo’s chatbot will be very useful. In fact, you could see Allo becoming the primary interface for interacting with Google search over time. This interaction model would more closely resemble Larry Page’s long-term vision for search, which goes far beyond the clumsy search query + results page model of today:


Chatbots are often used online and in messaging apps, but are also now included in many operating systems as intelligent virtual assistants, such as Siri for Apple products and Cortana for Windows. Dedicated chatbot appliances are also becoming increasingly common, such as Amazon's Alexa. These chatbots can perform a wide variety of functions based on user commands.
×