Open domain chatbots tends to talk about general topics and give appropriate responses. In other words, the knowledge domain is receptive to a wider pool of knowledge. However, these bots are difficult to perfect because language is so versatile. Conversations on social media sites such as Twitter and Reddit are typically considered open domain — they can go in virtually any direction. Furthermore, the whole context around a query requires common sense to understand many new topics properly, which is even harder for computers to grasp.

Your bot can use other AI services to further enrich the user experience. The Cognitive Services suite of pre-built AI services (which includes LUIS and QnA Maker) has services for vision, speech, language, search, and location. You can quickly add functionality such as language translation, spell checking, sentiment analysis, OCR, location awareness, and content moderation. These services can be wired up as middleware modules in your bot to interact more naturally and intelligently with the user.
By 2022, task-oriented dialog agents/chatbots will take your coffee order, help with tech support problems, and recommend restaurants on your travel. They will be effective, if boring. What do I see beyond 2022? I have no idea. Amara’s law says that we tend to overestimate technology in the short term while underestimating it in the long run. I hope I am right about the short term but wrong about AI in 2022 and beyond! Who would object against a Starbucks barista-bot that can chat about weather and crack a good joke?
2a : a computer program that performs automatic repetitive tasks : agent sense 5 Several shopping "bots" will track down prices for on-line merchandise from a variety of vendors.— Sam Vincent Meddis especially : one designed to perform a malicious action These bot programs churn away all day and night, prodding at millions of random IP addresses looking for holes to crawl through. — Jennifer Tanaka
When considering potential uses, first assess the impact on resources. There are two options here: replacement or empowerment. Replacement is clearly easier as you don’t need to consider integration with existing processes and you can build from scratch. Empowerment enhances an existing process by making it more flexible, accommodating, accessible and simple for users.
Ein Chatterbot, Chatbot oder kurz Bot ist ein textbasiertes Dialogsystem, welches das Chatten mit einem technischen System erlaubt. Er hat je einen Bereich zur Textein- und -ausgabe, über die sich in natürlicher Sprache mit dem dahinterstehenden System kommunizieren lässt. Chatbots können, müssen aber nicht in Verbindung mit einem Avatar benutzt werden. Technisch sind Bots näher mit einer Volltextsuchmaschine verwandt als mit künstlicher oder gar natürlicher Intelligenz. Mit der steigenden Computerleistung können Chatbot-Systeme allerdings immer schneller auf immer umfangreichere Datenbestände zugreifen und daher auch intelligente Dialoge für den Nutzer bieten. Solche Systeme werden auch als virtuelle persönliche Assistenten bezeichnet.
As with many 'organic' channels, the relative reach of your audience tends to decline over time due to a variety of factors. In email's case, it can be the over-exposure to marketing emails and moves from email providers to filter out promotional content; with other channels it can be the platform itself. Back in 2014 I wrote about how "Facebook's Likes Don't Matter Anymore" in relation to the declining organic reach of Facebook pages. Last year alone the organic reach of publishers on Facebook fell by a further 52%.

The most advanced bots are powered by artificial intelligence, helping it to understand complex requests, personalize responses, and improve interactions over time. This technology is still in its infancy, so most bots follow a set of rules programmed by a human via a bot-building platform. It's as simple as ordering a list of if-then statements and writing canned responses, often without needing to know a line of code.
Chatbots could be used as weapons on the social networks such as Twitter or Facebook. An entity or individuals could design create a countless number of chatbots to harass people. They could even try to track how successful their harassment is by using machine-learning-based methods to sharpen their strategies and counteract harassment detection tools.
A chatbot is a computer program that simulates human conversation through voice commands or text chats or both. Chatbot, short for chatterbot, is an Artificial Intelligence (AI) feature that can be embedded and used through any major messaging applications. There are a number of synonyms for chatbot, including "talkbot," "bot," "IM bot," "interactive agent" or "artificial conversation entity."
It may be tempting to assume that users will perform procedural tasks one by one in a neat and orderly way. For example, in a procedural conversation flow using dialogs, the user will start at root dialog, invoke the new order dialog from there, and then invoke the product search dialog. Then the user will select a product and confirm, exiting the product search dialog, complete the order, exiting the new order dialog, and arrive back at the root dialog.
Telegram launched its bot API in 2015, and launched version 2.0 of its platform in April 2016, adding support for bots to send rich media and access geolocation services. As with Kik, Telegram’s bots feel spartan and lack compelling features at this point, but that could change over time. Telegram has also yet to add payment features, so there are not yet any shopping-related bots on the platform.
I argued that it is super hard to scale a one-trick TODA into a general assistant that helps the user getting things done across multiple tasks. An intelligence assistant is arguably expected to hold an informal chit-chat with the user. It is this area where we are staring into perhaps the biggest challenge of AI. Observe how Samantha introduces herself to Joaquin Phoenix’s Ted in the clip below:

“There is hope that consumers will be keen on experimenting with bots to make things happen for them. It used to be like that in the mobile app world 4+ years ago. When somebody told you back then… ‘I have built an app for X’… You most likely would give it a try. Now, nobody does this. It is probably too late to build an app company as an indie developer. But with bots… consumers’ attention spans are hopefully going to be wide open/receptive again!” — Niko Bonatsos, Managing Director at General Catalyst

For example, ecommerce companies will likely want a chatbot that can display products, handle shipping questions, but a healthcare chatbot would look very different. Also, while most chatbot software is continually upping the AI-ante, a company called Landbot is taking a different approach, stripping away the complexity to help create better customer conversations.
“Utility gets something done following a prompt. At a higher level the more entertainment-related chatbots are able to answer all questions and get things done. Siri and Cortana you can have small talk with, as well as getting things done, so they are much harder to build. They took years and years of giant company’s efforts. Different companies that don’t have those resources, like Facebook, will build more constrained utility bots.”
If the success of WeChat in China is any sign, these utility bots are the future. Without ever leaving the messaging app, users can hail a taxi, video chat a friend, order food at a restaurant, and book their next vacation. In fact, WeChat has become so ingrained in society that a business would be considered obsolete without an integration. People who divide their time between China and the West complain that leaving this world behind is akin to stepping back in time.
Say you want to build a bot that tells the current temperature. The dialog for the bot only needs coding to recognize and report the requested location and temperature. To do this, the bot needs to pull data from the API of the local weather service, based on the user’s location, and to send that data back to the user—basically, a few lines of templatable code and you’re done.

Chatbots are unique because they not only engage with your customers, they also retain them. This means that unlike other forms of marketing, chatbots keep your customers entertained for longer. For example, let's say you catch your audience's attention with a video. While this video may be extremely engaging, once it ends, it doesn't have much more to offer.

WeChat was created by Chinese holding company Tencent three years ago. The product was created by a special projects team within Tencent (who also owns the dominant desktop messaging software in China, QQ) under the mandate of creating a completely new mobile-first messaging experience for the Chinese market. In three short years, WeChat has exploded in popularity and has become the dominant mobile messaging platform in China, with approximately 700M monthly active users (MAUs).

“They’re doing things we’re simply not doing in the U.S. Imagine if you were going to start a city from scratch. Rather than having to deal with all the infrastructure created 200 years ago, you could hit the ground running on the latest technology. That’s what China’s doing — they’re accessing markets for the first time through mobile apps and payments.” — Brian Buchwald, CEO of consumer intelligence firm Bomoda
At this year’s I/O, Google announced its own Facebook Messenger competitor called Allo. Apart from some neat features around privacy and self-expression, the really interesting part of Allo is @google, the app’s AI digital assistant. Google’s assistant is interesting because the company has about a decades-long head start in machine learning applied to search, so its likely that Allo’s chatbot will be very useful. In fact, you could see Allo becoming the primary interface for interacting with Google search over time. This interaction model would more closely resemble Larry Page’s long-term vision for search, which goes far beyond the clumsy search query + results page model of today:
However, if you’re trying to develop a sophisticated bot that can understand more than a couple of basic commands, you’re heading down a potentially complicated path. More elaborately coded bots respond to various forms of user questions and responses. The bots have typically been “trained” on databases of thousands of words, queries, or sentences so that they can learn to detect lexical similarity. A good e-commerce bot “knows” that trousers are a kind of pants (if you are in the US), though this is beyond the comprehension of a simple, untrained bot.

Authentication. Users start by authenticating themselves using whatever mechanism is provided by their channel of communication with the bot. The bot framework supports many communication channels, including Cortana, Microsoft Teams, Facebook Messenger, Kik, and Slack. For a list of channels, see Connect a bot to channels. When you create a bot with Azure Bot Service, the Web Chat channel is automatically configured. This channel allows users to interact with your bot directly in a web page. You can also connect the bot to a custom app by using the Direct Line channel. The user's identity is used to provide role-based access control, as well as to serve personalized content.
Online chatbots save time and efforts by automating customer support. Gartner forecasts that by 2020, over 85% of customer interactions will be handled without a human. However, the opportunites provided by chatbot systems go far beyond giving responses to customers’ inquiries. They are also used for other business tasks, like collecting information about users, helping to organize meetings and reducing overhead costs. There is no wonder that size of the chatbot market is growing exponentially.
If you ask any marketing expert, customer engagement is simply about talking to the customer and reeling them in when the time’s right. This means being there for the user whenever they look for you throughout their lifecycle and therein lies the trick: How can you be sure you’re there at all times and especially when it matters most to the customer?
Want to initiate the conversation with customers from your Facebook page rather than wait for them to come to you? Facebook lets you do that. You can load email addresses and phone numbers from your subscriber list into custom Facebook audiences. To discourage spam, Facebook charges a fee to use this service. You can then send a message directly from your page to the audience you created.
How: instead of asking someone to fill out a form on your website to be contacted by your sales team, you direct them straight into Messenger, where you can ask them some of their contact details and any qualification questions (for example, "How many employees does your company have?"). Depending on what they respond with you could ask if they'd like to arrange a meeting with a salesperson right there and then.

The goal of intent-based bots is to solve user queries on a one to one basis. With each question answered it can adapt to the user behavior. The more data the bots receive, the more intelligent they become. Great examples of intent-based bots are Siri, Google Assistant, and Amazon Alexa. The bot has the ability to extract contextual information such as location, and state information like chat history, to suggest appropriate solutions in a specific situation.
It won’t be an easy march though once we get to the nitty-gritty details. For example, I heard through the grapevine that when Starbucks looked at the voice data they collected from customer orders, they found that there are a few millions unique ways to order. (For those in the field, I’m talking about unique user utterances.) This is to be expected given the wild combinations of latte vs mocha, dairy vs soy, grande vs trenta, extra-hot vs iced, room vs no-room, for here vs to-go, snack variety, spoken accent diversity, etc. The AI practitioner will soon curse all these dimensions before taking a deep learning breath and getting to work. I feel though that given practically unlimited data, deep learning is now good enough to overcome this problem, and it is only a matter of couple of years until we see these TODA solutions deployed. One technique to watch is Generative Adversarial Nets (GAN). Roughly speaking, GAN engages itself in an iterative game of counterfeiting real stuffs, getting caught by the police neural network, improving counterfeiting skill, and rinse-and-repeating until it can pass as your Starbucks’ order-taking person, given enough data and iterations.
Over the past year, Forrester clients have been brimming with questions about chatbots and their role in customer service. In fact, in that time, more than half of the client inquiries I have received have touched on chatbots, artificial intelligence, natural language understanding, machine learning, and conversational self-service. Many of those inquiries were of the […]
A rapidly growing, benign, form of internet bot is the chatbot. From 2016, when Facebook Messenger allowed developers to place chatbots on their platform, there has been an exponential growth of their use on that forum alone. 30,000 bots were created for Messenger in the first six months, rising to 100,000 by September 2017.[8] Avi Ben Ezra, CTO of SnatchBot, told Forbes that evidence from the use of their chatbot building platform pointed to a near future saving of millions of hours of human labour as 'live chat' on websites was replaced with bots.[9]
This reference architecture describes how to build an enterprise-grade conversational bot (chatbot) using the Azure Bot Framework. Each bot is different, but there are some common patterns, workflows, and technologies to be aware of. Especially for a bot to serve enterprise workloads, there are many design considerations beyond just the core functionality. This article covers the most essential design aspects, and introduces the tools needed to build a robust, secure, and actively learning bot.
aLVin is built on the foundation of Nuance’s Nina, the intelligent multichannel virtual assistant that leverages natural language understanding (NLU) and cognitive computing capabilities. aLVin interacts with brokers to better understand “intent” and deliver the right information 24/7; the chatbot was built with extensive knowledge of LV=Broker’s products, which accelerated the process of being able to answer more questions and direct brokers to the right products early on
What if you’re creating a bot for a major online clothing retailer? For starters, the bot will require a greeting (“How can I help you?”) as well as a process for saying its goodbyes. In between, the bot needs to respond to inputs, which could range from shopping inquiries to questions about shipping rates or return policies, and the bot must possess a script for fielding questions it doesn’t understand.

One pertinent field of AI research is natural language processing. Usually, weak AI fields employ specialized software or programming languages created specifically for the narrow function required. For example, A.L.I.C.E. utilises a markup language called AIML, which is specific to its function as a conversational agent, and has since been adopted by various other developers of, so called, Alicebots. Nevertheless, A.L.I.C.E. is still purely based on pattern matching techniques without any reasoning capabilities, the same technique ELIZA was using back in 1966. This is not strong AI, which would require sapience and logical reasoning abilities.
How can our business leverage technology to better and more often engage younger audiences with our products and services? H&M is one of several retailers experimenting with and leveraging chatbots as a  mobile marketing opportunity – according to a report by Accenture, 32 percent of the world (a large portion of the population 29 years old and younger) uses social media daily and 80 percent of that time is via mobile.
ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 
Endurance is a companion chatbot that uses neurolinguistics programming (better known as NLP) to have friendly conversations with suspected patients with Alzheimer’s and other forms of dementia. It uses AI technology to maintain a lucid conversation while simultaneously testing the human user’s ability to remember information in different ways. The chatbot encourages the user to talk about their favorite activities, memories, music, etc. This doesn’t just test the person’s memory but actively promotes their ability to recall.

It’s not all doom and gloom for chatbots. Chatbots are a stopgap until virtual assistants are able to tackle all of our questions and concerns, regardless of the site or platform. Virtual assistants will eventually connect to everything in your digital life, from websites to IoT-enabled devices. Rather than going through different websites and speaking to various different chatbots, the virtual assistant will be the platform for finding the answers you need. If these assistants are doing such a good job, why would you even bother to use a branded chatbot? Realistically this won’t take place for sometime, due to the fragmentation of the marketplace.
One of the most thriving eLearning innovations is the chatbot technology. Chatbots work on the principle of interacting with users in a human-like manner. These intelligent bots are often deployed as virtual assistants. The best example would be Google Allo - an intelligent messaging app packed with Google Assistant that interacts with the user by texting back and replying to queries. This app supports both voice and text queries.
Another benefit is that your chatbot can store information on the types of questions it’s being asked. Not only does this make the chatbot better equipped to answer future questions and upsell additional products, it gives you a better understanding of what your customers need to know to close the deal. With this information, you’ll be better equipped to market more effectively to your customers in the future.
Amazon’s Echo device has been a surprise hit, reaching over 3M units sold in less than 18 months. Although part of this success can be attributed to the massive awareness-building power of the homepage, the device receives positive reviews from customers and experts alike, and has even prompted Google to develop its own version of the same device, Google Home.

The components of this infrastructure need to be networked and monitored by a dedicated Electrical Power Monitoring System (EPMS) to help avoid downtime or understand what … Continue Reading...