For example, say you want to purchase a pair of shoes online from Nordstrom. You would have to browse their site and look around until you find the pair you wanted. Then you would add the pair to your cart to go through the motions of checking out. But in the case Nordstrom had a conversational bot, you would simply tell the bot what you’re looking for and get an instant answer. You would be able to search within an interface that actually learns what you like, even when you can’t coherently articulate it. And in the not-so-distant future, we’ll even have similar experiences when we visit the retail stores.


But, as any human knows, no question or statement in a conversation really has a limited number of potential responses. There is an infinite number of ways to combine the finite number of words in a human language to say something. Real conversation requires creativity, spontaneity, and inference. Right now, those traits are still the realm of humans alone. There is still a gamut of work to finish in order to make bots as person-centric as Rogerian therapists, but bots and their creators are getting closer every day.
AllAgriculture (24) AI & ML (142) AR, VR, & MR (65) Asset Tracking (53) Blockchain (21) Building Automation (38) Connectivity (148) Bluetooth (12) Cellular (38) LPWAN (38) Data & Analytics (131) Devices & Sensors (174) Digital Transformation (189) Edge & Cloud Computing (54) Energy & Utilities (42) Finance & Insurance (10) Industrial IoT (101) IoT Platforms (81) Medical & Healthcare (47) Retail (28) Security (139) Smart City (88) Smart Home (91) Transport & Supply Chain (59) UI & UX (39) Voice Interaction (33)

Improve loyalty: By providing a responsive, efficient experience for customers, employees and partners, a chatbot will improve satisfaction and loyalty. Whether your chatbot answers questions about employees’ corporate benefits or provides answers to technical support questions, users can come away with a strengthened connection to your organization.

If you visit a Singapore government website in the near future, chances are you’ll be using a chatbot to access the services you need, as part of the country’s Smart Nation initiative. In Australia, Deakin University students now access campus services using its ‘Genie’ virtual assistant platform, made up of chatbots, artificial intelligence (AI), voice recognition and predictive analytics.
WeChat was created by Chinese holding company Tencent three years ago. The product was created by a special projects team within Tencent (who also owns the dominant desktop messaging software in China, QQ) under the mandate of creating a completely new mobile-first messaging experience for the Chinese market. In three short years, WeChat has exploded in popularity and has become the dominant mobile messaging platform in China, with approximately 700M monthly active users (MAUs).

Training a chatbot happens at much faster and larger scale than you teach a human. Humans Customer Service Representatives are given manuals and have them read it and understand. While the Customer Support Chatbot is fed with thousands of conversation logs and from those logs, the chatbot is able to understand what type of question requires what type of answers.
It won’t be an easy march though once we get to the nitty-gritty details. For example, I heard through the grapevine that when Starbucks looked at the voice data they collected from customer orders, they found that there are a few millions unique ways to order. (For those in the field, I’m talking about unique user utterances.) This is to be expected given the wild combinations of latte vs mocha, dairy vs soy, grande vs trenta, extra-hot vs iced, room vs no-room, for here vs to-go, snack variety, spoken accent diversity, etc. The AI practitioner will soon curse all these dimensions before taking a deep learning breath and getting to work. I feel though that given practically unlimited data, deep learning is now good enough to overcome this problem, and it is only a matter of couple of years until we see these TODA solutions deployed. One technique to watch is Generative Adversarial Nets (GAN). Roughly speaking, GAN engages itself in an iterative game of counterfeiting real stuffs, getting caught by the police neural network, improving counterfeiting skill, and rinse-and-repeating until it can pass as your Starbucks’ order-taking person, given enough data and iterations.
The process of building, testing and deploying chatbots can be done on cloud-based chatbot development platforms[51] offered by cloud Platform as a Service (PaaS) providers such as Oracle Cloud Platform Yekaliva[47][28] and IBM Watson.[52][53][54] These cloud platforms provide Natural Language Processing, Artificial Intelligence and Mobile Backend as a Service for chatbot development.
Whilst the payout wasn't huge within the early days of Amazon, those who got in early are now seeing huge rewards, with 38% of shoppers starting their buying journey within Amazon (source), making it the number one retail search engine. Some studies are suggesting that Amazon is responsible for 80% of e-commerce growth for publicly traded web retailers (source).

The classic historic early chatbots are ELIZA (1966) and PARRY (1972).[10][11][12][13] More recent notable programs include A.L.I.C.E., Jabberwacky and D.U.D.E (Agence Nationale de la Recherche and CNRS 2006). While ELIZA and PARRY were used exclusively to simulate typed conversation, many chatbots now include functional features such as games and web searching abilities. In 1984, a book called The Policeman's Beard is Half Constructed was published, allegedly written by the chatbot Racter (though the program as released would not have been capable of doing so).[14]
×