These are just a few of the most inspirational chatbot startups from the last year, with numerous others around the globe currently receiving acclaim for how quickly and innovatively they are using AI to change the world. With development becoming more intuitive and accessible to people all over the world, we can expect to see more startups using new technology to solve old problems.
Aside from being practical and time-convenient, chatbots guarantee a huge reduction in support costs. According to IBM, the influence of chatbots on CRM is staggering.  They provide a 99 percent improvement rate in response times, therefore, cutting resolution from 38 hours to five minutes. Also, they caused a massive drop in cost per query from $15-$200 (human agents) to $1 (virtual agents). Finally, virtual agents can take up an average of 30,000+ consumers per month.
The main challenge is in teaching a chatbot to understand the language of your customers. In every business, customers express themselves differently and each group of a target audience speaks its own way. The language is influenced by advertising campaigns on the market, the political situation in the country, releases of new services and products from Google, Apple and Pepsi among others. The way people speak depends on their city, mood, weather and moon phase. An important role in the communication of the business with customers may have the release of the film Star Wars, for example. That’s why training a chatbot to understand correctly everything the user types requires a lot of efforts.
From any point in the conversation, the bot needs to know where to go next. If a user writes, “I’m looking for new pants,” the bot might ask, “For a man or woman?” The user may type, “For a woman.” Does the bot then ask about size, style, brand, or color? What if one of those modifiers was already specified in the query? The possibilities are endless, and every one of them has to be mapped with rules.

The advancement in technology has opened gates for the innovative and efficient solutions to cater the needs of students by developing applications that can serve as a personalized learning resource. Moreover, these automated applications can potentially help instructors and teachers in saving up a lot of time by offering individual attention to each student.
The main challenge is in teaching a chatbot to understand the language of your customers. In every business, customers express themselves differently and each group of a target audience speaks its own way. The language is influenced by advertising campaigns on the market, the political situation in the country, releases of new services and products from Google, Apple and Pepsi among others. The way people speak depends on their city, mood, weather and moon phase. An important role in the communication of the business with customers may have the release of the film Star Wars, for example. That’s why training a chatbot to understand correctly everything the user types requires a lot of efforts.
Are these shoes for work or for fun?Fun 🎉Cool, what is your budget?$100Here's a selection of shoes for youDo you want our "5 tips for better mornings" guide?Yes Here you go Download Would you like to sign up for my weekly coaching?Sign Up Now Welcome to Zen Day Spa. How can I help you?Services We can pamper you with one of our deep tissue massages. Pick a length 60 minutes View Schedule Weekend

LV= also benefitted as a larger company. According to Hickman, “Over the (trial) period, the volume of calls from broker partners reduced by 91 per cent…that means is aLVin was able to provide a final answer in around 70 per cent of conversations with the user, and only 22 per cent of those conversations resulted in [needing] a chat with a real-life agent.”


“There is hope that consumers will be keen on experimenting with bots to make things happen for them. It used to be like that in the mobile app world 4+ years ago. When somebody told you back then… ‘I have built an app for X’… You most likely would give it a try. Now, nobody does this. It is probably too late to build an app company as an indie developer. But with bots… consumers’ attention spans are hopefully going to be wide open/receptive again!” — Niko Bonatsos, Managing Director at General Catalyst
Conversational bots can help a business’s customers with difficult transactions, plus collect data and give recommendations. For example, a conversational bot integrated to an airline’s website can answer questions regarding flight availability, rebook tickets, fees and suggest add-ons like hotels. Though a conversational bot may not be able to finish the exchanges, it could still be able to gather preliminary data and pass it on to the next available customer care agent. In both cases, the airline will save considerable time in its call center.
These are one of the major tools applied in machine learning. They are brain-inspired processing tools that actually replicate how humans learn. And now that we’ve successfully replicated the way we learn, these systems are capable of taking that processing power to a level where even greater volumes of more complex data can be understood by the machine.
The plugin aspect to Chatfuel is one of the real bonuses. You can link up to all sorts of different services to add richer content to the conversations that you're having. This includes linking up to Twitter, Instagram and YouTube, as well as being able to request that the user share their location, serve video and audio content, and build out custom attributes that can be used to segment users based on their inputs. This last part is a killer feature.
Respect the conversational UI. The full interaction should take place natively within the app. The goal is to recognize the user's intent and provide the right content with minimum user input. Every question asked should bring the user closer to the answer they want. If you need so much information that you're playing a game of 20 Questions, then switch to a form and deliver the content another way.
ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 
If you are looking for another paid platform, Beep Boop may be your next stop. It is a hosting platform that is designed for developers looking to make apps for Facebook Messenger and Slack specifically. First, set up your code using Github, the popular version control repository and Internet hosting service, then input it into the Beep Boop platform to link it with your Facebook Messenger or Slack application. The bots will then be able to interact with your customers with real-time chat and messaging.
Telegram launched its bot API in 2015, and launched version 2.0 of its platform in April 2016, adding support for bots to send rich media and access geolocation services. As with Kik, Telegram’s bots feel spartan and lack compelling features at this point, but that could change over time. Telegram has also yet to add payment features, so there are not yet any shopping-related bots on the platform.
Short for chat robot, a computer program that simulates human conversation, or chat, through artificial intelligence. Typically, a chat bot will communicate with a real person, but applications are being developed in which two chat bots can communicate with each other. Chat bots are used in applications such as ecommerce customer service, call centers and Internet gaming. Chat bots used for these purposes are typically limited to conversations regarding a specialized purpose and not for the entire range of human communication.
In a traditional application, the user interface (UI) consists of a series of screens, and a single app or website can use one or more screens as needed to exchange information with the user. Most applications start with a main screen where users initially land, and that screen provides navigation that leads to other screens for various functions like starting a new order, browsing products, or looking for help.
You may remember Facebook’s big chatbot push in 2016 –  when they announced that they were opening up the Messenger platform to chatbots of all varieties. Every organization suddenly needed to get their hands on the technology. The idea of having conversational chatbot technology was enthralling, but behind all the glitz, glamour and tech sex appeal, was something a little bit less exciting. To quote Gizmodo writer, Darren Orf:
These days, checking the headlines over morning coffee is as much about figuring out if we should be hunkering down in the basement preparing for imminent nuclear annihilation as it is about keeping up with the day’s headlines. Unfortunately, even the most diligent newshounds may find it difficult to distinguish the signal from the noise, which is why NBC launched its NBC Politics Bot on Facebook Messenger shortly before the U.S. presidential election in 2016.

A chatbot is an artificial intelligence (AI) program that simulates interactive human conversation by using key pre-calculated user phrases and auditory or text-based signals. Chatbots are frequently used for basic customer service and marketing systems that frequent social networking hubs and instant messaging (IM) clients. They are also often included in operating systems as intelligent virtual assistants.
On the other hand, early adoption can be somewhat of a curse. In 2011, many companies and individuals, myself included, invested a lot of time and money into Google+, dubbed to be bigger than Facebook at the time. They acquired over 10 million new users within the first two weeks of launch and things were looking positive. Many companies doubled-down on growing a community within the platform, hopeful of using it as a new and growing acquisition channel, but things didn't exactly pan out that way.
Companies most likely to be supporting bots operate in the health, communications and banking industries, with informational bots garnering the majority of attention. However, challenges still abound, even among bot supporters, with lack of skilled talent to develop and work with bots cited as a challenge in implementing solutions, followed by deployment and acquisition costs, as well as data privacy and security.
There are several defined conversational branches that the bots can take depending on what the user enters, but the primary goal of the app is to sell comic books and movie tickets. As a result, the conversations users can have with Star-Lord might feel a little forced. One aspect of the experience the app gets right, however, is the fact that the conversations users can have with the bot are interspersed with gorgeous, full-color artwork from Marvel’s comics. 

What if you’re creating a bot for a major online clothing retailer? For starters, the bot will require a greeting (“How can I help you?”) as well as a process for saying its goodbyes. In between, the bot needs to respond to inputs, which could range from shopping inquiries to questions about shipping rates or return policies, and the bot must possess a script for fielding questions it doesn’t understand.
If AI struggles with fourth-grade science question answering, should AI be expected to hold an adult-level, open-ended chit-chat about politics, entertainment, and weather? It is thus encouraging to see that Microsoft’s Satya Nadella did not give up on Tay after its debacle, and Amazon’s Jeff Bezos is sponsoring an Alexa social chatbot competition. I love this below quote from Jeff:
Authentication. Users start by authenticating themselves using whatever mechanism is provided by their channel of communication with the bot. The bot framework supports many communication channels, including Cortana, Microsoft Teams, Facebook Messenger, Kik, and Slack. For a list of channels, see Connect a bot to channels. When you create a bot with Azure Bot Service, the Web Chat channel is automatically configured. This channel allows users to interact with your bot directly in a web page. You can also connect the bot to a custom app by using the Direct Line channel. The user's identity is used to provide role-based access control, as well as to serve personalized content.
Marketing teams are increasingly interested in leveraging branded chatbots, but most struggle to deliver business value. My recently published report, Case Study: Take A Focused And Disciplined Approach To Drive Chatbot Success, shows how OCBC Bank in Singapore is bucking the trend: The bank recently created Emma, a chatbot focused on home loan leads, which […]
Bots are also used to buy up good seats for concerts, particularly by ticket brokers who resell the tickets.[12] Bots are employed against entertainment event-ticketing sites. The bots are used by ticket brokers to unfairly obtain the best seats for themselves while depriving the general public of also having a chance to obtain the good seats. The bot runs through the purchase process and obtains better seats by pulling as many seats back as it can.
In sales, chatbots are being used to assist consumers shopping online, either by answering noncomplex product questions or providing helpful information that the consumer could later search for, including shipping price and availability. Chatbots are also used in service departments, assisting service agents in answering repetitive requests. Once a conversation gets too complex for a chatbot, it will be transferred to a human service agent .
The educators or class organizers can opt for chatbots to simplify daily routine tasks. Chatbots may serve as a helping hand to the teacher in dealing with the daily queries by allowing bots to answer the questions of students on a daily basis, or perhaps even check their homework. Eventually, they offer teachers more time to work with their students on a one-by-one basis.
The advancement in technology has opened gates for the innovative and efficient solutions to cater the needs of students by developing applications that can serve as a personalized learning resource. Moreover, these automated applications can potentially help instructors and teachers in saving up a lot of time by offering individual attention to each student.
These days, checking the headlines over morning coffee is as much about figuring out if we should be hunkering down in the basement preparing for imminent nuclear annihilation as it is about keeping up with the day’s headlines. Unfortunately, even the most diligent newshounds may find it difficult to distinguish the signal from the noise, which is why NBC launched its NBC Politics Bot on Facebook Messenger shortly before the U.S. presidential election in 2016.
In a particularly alarming example of unexpected consequences, the bots soon began to devise their own language – in a sense. After being online for a short time, researchers discovered that their bots had begun to deviate significantly from pre-programmed conversational pathways and were responding to users (and each other) in an increasingly strange way, ultimately creating their own language without any human input.
ALICE – which stands for Artificial Linguistic Internet Computer Entity, an acronym that could have been lifted straight out of an episode of The X-Files – was developed and launched by creator Dr. Richard Wallace way back in the dark days of the early Internet in 1995. (As you can see in the image above, the website’s aesthetic remains virtually unchanged since that time, a powerful reminder of how far web design has come.) 
The sentiment analysis in machine learning uses language analytics to determine the attitude or emotional state of whom they are speaking to in any given situation. This has proven to be difficult for even the most advanced chatbot due to an inability to detect certain questions and comments from context. Developers are creating these bots to automate a wider range of processes in an increasingly human-like way and to continue to develop and learn over time.

This is a lot less complicated than it appears. Given a set of sentences, each belonging to a class, and a new input sentence, we can count the occurrence of each word in each class, account for its commonality and assign each class a score. Factoring for commonality is important: matching the word “it” is considerably less meaningful than a match for the word “cheese”. The class with the highest score is the one most likely to belong to the input sentence. This is a slight oversimplification as words need to be reduced to their stems, but you get the basic idea.


There was a time when even some of the most prominent minds believed that a machine could not be as intelligent as humans but in 1991, the start of the Loebner Prize competitions began to prove otherwise. The competition awards the best performing chatbot that convinces the judges that it is some form of intelligence. But despite the tremendous development of chatbots and their ability to execute intelligent behavior not displayed by humans, chatbots still do not have the accuracy to understand the context of questions in every situation each time.
Kik is one of the most popular chat apps among teens with 275M MAUs and 40% of those are in the 13–24 year old demographic. In April, Kik launched its own bot store with 16 launch partners including Sephora, H&M, Vine, the Weather Channel, and Funny or Die. Using Kik’s bots currently feel like using the internet in 1994, very rough around the edges and limited functionality / usefulness. However, we’ll see how their API and bots progress over time, Kik’s popularity among an attractive demographic might convince some brands to invest in the platform.

By 2022, task-oriented dialog agents/chatbots will take your coffee order, help with tech support problems, and recommend restaurants on your travel. They will be effective, if boring. What do I see beyond 2022? I have no idea. Amara’s law says that we tend to overestimate technology in the short term while underestimating it in the long run. I hope I am right about the short term but wrong about AI in 2022 and beyond! Who would object against a Starbucks barista-bot that can chat about weather and crack a good joke?
Many expect Facebook to roll out a bot store of some kind at its annual F8 conference for software developers this week, which means these bots may soon operate inside Messenger, its messaging app. It has already started testing a virtual assistant bot called “M,” but the product is only available for a few people and still primarily powered by humans.

Today, more than ever, instant availability and approachability matter. Which is why your presence should be dictated by your customer’s preference or the type of message your business wants to convey. Keep in mind that these can overlap or change depending on your demographic you wish to acquire or cater to. There are very few set-in-stone rules when it comes to new customers.

Smart chatbots rely on artificial intelligence when they communicate with users. Instead of pre-prepared answers, the robot responds with adequate suggestions on the topic. In addition, all the words said by the customers are recorded for later processing. However, the Forrester report “The State of Chatbots” points out that artificial intelligence is not a magic and is not yet ready to produce marvelous experiences for users on its own. On the contrary, it requires a huge work:

Other bots like X.ai can help schedule your meetings for you. Simply add the bot to your email thread, and it will take over back-and-forth conversation needed to schedule a meeting, alert you once it’s been arranged and add it to your calendar. As bot technology improves, the thinking is that bots will be able to automate all kinds of things; perhaps even something as complex as your taxes.
Chatting with a bot should be like talking to a human that knows everything. If you're using a bot to change an airline reservation, the bot should know if you have an unused credit on your account and whether you typically pick the aisle or window seat. Artificial intelligence will continue to radically shape this front, but a bot should connect with your current systems so a shared contact record can drive personalization.
Like most of the Applications, the Chatbot is also connected to the Database. The knowledge base or the database of information is used to feed the chatbot with the information needed to give a suitable response to the user. Data of user’s activities and whether or not your chatbot was able to match their questions, is captured in the data store. NLP translates human language into information with a combination of patterns and text that can be mapped in the real time to find applicable responses.
In our work at ZipfWorks building and scaling intelligent shopping platforms and applications, we pay close attention to emerging trends impacting digital commerce such as chatbots and mobile commerce. As this nascent trend towards a more conversational commerce ecosystem unfolds at a dizzying pace, we felt it would be useful to take a step back and look at the major initiatives and forces shaping this trend and compiled them here in this report. We’ve applied some of these concepts in our current project Dealspotr, to help more shoppers save more money through intelligent use of technology and social product design.
For starters, he was the former president of PayPal. And he once founded a mobile media monetization firm. And he also founded a company that facilitated mobile phone payments. And then he helped Facebook acquire Braintree, which invented Venmo. And then he invented Messenger’s P2P payment platform. And then he was appointed to the board of directors at Coinbase.
According to this study by Petter Bae Brandtzaeg, “the real buzz about this technology did not start before the spring of 2016. Two reasons for the sudden and renewed interest in chatbots were [number one] massive advances in artificial intelligence (AI) and a major usage shift from online social networksto mobile messaging applications such as Facebook Messenger, Telegram, Slack, Kik, and Viber.”
Marketers’ interest in chatbots is growing rapidly. Globally, 57% of firms that Forrester surveyed are already using chatbots or plan to begin doing so this year. However, marketers struggle to deliver value. My latest report, Chatbots Are Transforming Marketing, shows B2C marketing professionals how to use chatbots for marketing by focusing on the discover, explore, […]
The fact that you can now run ads directly to Messenger is an enormous opportunity for any business. This skips the convoluted and leaky process of trying to acquire someone's email address to nurture them outside of Facebook's platform. Instead, you can retain the connection with someone inside Facebook and improve the overall conversion rates to receiving an engagement.
The market shapes customer behavior. Gartner predicts that “40% of mobile interactions will be managed by smart agents by 2020.” Every single business out there today either has a chatbot already or is considering one. 30% of customers expect to see a live chat option on your website. Three out of 10 consumers would give up phone calls to use messaging. As more and more customers begin expecting your company to have a direct way to contact you, it makes sense to have a touch point on a messenger.
The upcoming TODA agents are good at one thing, and one thing only. As Facebook found out with the ambitious Project M, building general personal assistants that can help users in multiple tasks (cross-domain agents) is hard. Think awfully hard. Beyond the obvious increase in scope, knowledge, and vocabulary, there is no built-in data generator that feeds the hungry learning machine (sans an unlikely concerted effort to aggregate the data silos from multiple businesses). The jury is out whether the army of human agents that Project M employs can scale, even with Facebook’s kind of resources. In addition, cross-domain agents will probably need major advances in areas such as domain adaptation, transfer learning, dialog planning and management, reinforcement/apprenticeship learning, automatic dialog evaluation, etc.
Ultimately, only time will tell how effective the likes of Facebook Messenger will become in the long term. As more and more companies look to use chatbots within the platform, the greater the frequency of messages that individual users will receive. This could result in Facebook (and other messaging platforms) placing stricter restrictions on usage, but until then I'd recommend testing as much as possible.
[In] artificial intelligence ... machines are made to behave in wondrous ways, often sufficient to dazzle even the most experienced observer. But once a particular program is unmasked, once its inner workings are explained ... its magic crumbles away; it stands revealed as a mere collection of procedures ... The observer says to himself "I could have written that". With that thought he moves the program in question from the shelf marked "intelligent", to that reserved for curios ... The object of this paper is to cause just such a re-evaluation of the program about to be "explained". Few programs ever needed it more.
Conversational bots can help a business’s customers with difficult transactions, plus collect data and give recommendations. For example, a conversational bot integrated to an airline’s website can answer questions regarding flight availability, rebook tickets, fees and suggest add-ons like hotels. Though a conversational bot may not be able to finish the exchanges, it could still be able to gather preliminary data and pass it on to the next available customer care agent. In both cases, the airline will save considerable time in its call center.
Die meisten Chatbots greifen auf eine vorgefertigte Datenbank, die sog. Wissensdatenbank mit Antworten und Erkennungsmustern, zurück. Das Programm zerlegt die eingegebene Frage zuerst in Einzelteile und verarbeitet diese nach vorgegebenen Regeln. Dabei können Schreibweisen harmonisiert (Groß- und Kleinschreibung, Umlaute etc.), Satzzeichen interpretiert und Tippfehler ausgeglichen werden (Preprocessing). Im zweiten Schritt erfolgt dann die eigentliche Erkennung der Frage. Diese wird üblicherweise über Erkennungsmuster gelöst, manche Chatbots erlauben darüber hinaus die Verschachtelung verschiedener Mustererkennungen über sogenannte Makros. Wird eine zur Frage passende Antwort erkannt, kann diese noch angepasst werden (beispielsweise können skriptgesteuert berechnete Daten eingefügt werden – „In Ulm sind es heute 37 °C.“). Diesen Vorgang nennt man Postprocessing. Die daraus entstandene Antwort wird dann ausgegeben. Moderne kommerzielle Chatbot-Programme erlauben darüber hinaus den direkten Zugriff auf die gesamte Verarbeitung über eingebaute Skriptsprachen und Programmierschnittstellen.
Businesses are no exception to this rule. As more and more users now expect and prefer chat as a primary mode of communication, we’ll begin to see more and more businesses leveraging conversational AI to achieve business goals—just as Gartner predicts. It’s not just for the customer; your business can reduce operational costs and scale operations as well.
Whilst the payout wasn't huge within the early days of Amazon, those who got in early are now seeing huge rewards, with 38% of shoppers starting their buying journey within Amazon (source), making it the number one retail search engine. Some studies are suggesting that Amazon is responsible for 80% of e-commerce growth for publicly traded web retailers (source).
As ChatbotLifeexplained, developing bots is not the same as building apps. While apps specialise in a number of functions, chatbots have a bigger capacity for inputs. The trick here is to start with a simple objective and focus on doing it really well (i.e., having a minimum viable product or ‘MVP’). From that point onward, businesses can upgrade their bots.
More and more companies embrace chatbots to increase engagement with their audiences in the last few years. Especially for some industries including banking, insurance, and retail chatbots started to function as efficient interactive tools to increase customer satisfaction and cost-effectiveness. A study by Humley found out 43% of digital banking users are turning to chatbots – the increasing trend shows that banking customers consider the chatbot as an alternative channel to get instant information and solve their issues.
In a traditional application, the user interface (UI) is a series of screens. A single app or website can use one or more screens as needed to exchange information with the user. Most applications start with a main screen where users initially land and provide navigation that leads to other screens for various functions like starting a new order, browsing products, or looking for help.
×